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Mathematics

ZERO IS NEITHER NOTHING NOR NOUGHT

BUT A NUMBER 1

JOSEPH T. CLARK, S.J.

Bellannine College

. . . Omitto infinita exempla in Aristotele,
Platone, et eorum interpretibus illustrioribus,

quae nulla ratione intelligi possunt sine medi

ocri scientiarum mathematicarum cognitione;
immo propter earum ignorationem nonnulli

philosophiae professores saepissime multos

errores, eosque gravissimos, commiserunt, et

(quod peius est) scriptis etiam mandarunt,
quorum aliquos in medium proferre non essct

difficile. Pari ratione oporteret praeceptores
philosophiae callere disciplinas mathematicas,
saltern mediocriter, ne in similes scopulos
magna famae, quam Societas in litteris hahet.

iactura et dedecorc incurrerent. . . . Ch. Cla-

vius, Monumenta paedagogica Societatis leni

quae primam rationem studiorum praecessere
(Madrid: 1901), pp. 472-473.

1 Text of an invitation lecture delivered at the Ninth Weston Science Col-
loquium, Weston College, Weston, Mass., November 22, 1953. This essay is respect

fully dedicated to the revered memory of the late and much lamented Father
Domhnall A. Steele, S.J., from whom I learned how to learn at last all the mathe

matics which I had previously studied and even successfully 'passed’, and incalcu-

lably more besides. Father Steele was born in 1894 at Nantwich, Cheshire, England,
and entered the Society of Jesus in 1915. In 1922 he received the degree of 13.5. at

University College, London. Ordained a priest at Roermond, the Netherlands,
in 1925, he completed his theological studies there at Valkenburg the following
year. From 1927 to 193 5 Father Steele did graduate research in mathematics at

the Universities of Goettingen and Bonn, Germany. Professor of mathematics at

Bellarmine College, Oxfordshire, England, from 193 5 to 1942 he went in the
latter year to the Jesuit Residence in Edinburgh, Scotland where he devoted himself
to mathematical research and writing until 1948. In that year he came to the
United States as Professor of mathematics at Fordham University, New York City.
Regarded by his professional colleagues in the field as a distinguished authority on

the history of mathematics Father Steele wrote a treatise on the role of ruler and

compass in Greek mathematical thought: Über die Kolle von Zirkcl und Lineal i"
der griechischen Mathematik (Berlin: Verlag von Julius Springer 1936) which was

acclaimed by Professor B. L. van der Waerden, internationally famous algebraist, as

the most authoritative work on the history of Greek mathematics.” Father Steele

40
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1.0 ZERO IS NOT NOTHING

Philosophers, classical philologists, and historians of physical sci-

ence will remember that an incomplete study of the kinematics of

bodies led Aristotle to conclude, erroneously as it happens, that for a

given force or impulse, either naturally inherent or violently applied,
the speed of a body in transit was in all cases inversely proportional to

the density of the medium through which it moved. The gist of
this Aristotelian principle may be expressed in the form of an equa-

tion: s = k/d, where s, the speed, is a function of and, the density of

the medium, and k is a factor of proportionality. In the context of

this pseudo-law Aristotle further raised the interesting theoretical

question concerning the speed of a body in a vacuum, i.e. where

j = 0. In reply Aristotle wrote, or so at least we are told in what is

reputed to be the best available English translation of his Physics:

Now there is no ratio in which the void is exceeded by body,
as there is no ratio of 0 to a number. For if 4 exceeds 3 by 1,

and 2 by more than 1, and 1 by still more than it exceeds 2,

still there is no ratio by which it exceeds 0; for that which exceeds

must be divisible into the excess that which is exceeded, so

that 4 will be what it exceeds 0 by -f- 0. . . .

2

But I respectfully submit to a linguistically literate audience that this

translation of the original Greek text is seriously misleading in its

unqualified use of established mathematical symbols for numbers and

operations throughout the passage. For Aristotle wrote here oi’Ser,
which means literally 'no thing,’ or better perhaps, 'nothing.M But

as it happens, zero is not nothing.

was a member of the Edinburgh and American Mathematical Societies, and in his

later years in New York active as an associate of the Friends of Scripta Mathe-

tnatica society, and a member of the interim executive committee for the foundation

of the New York Metropolitan Chapter of the History of Science Society. Joint

author with Father Walter Bruggcr, S.J., of the Philosophisches Worterbuch to

which he contributed definitive articles on more than sixty mathematicians and

mathematical philosophers, Father Steele also wrote a spectacularly excellent intro-

duction in historical vein for his translation of B. Bolzano’s Paradoxien dcs Unend-

lichen. Father Steele’s last publications, both articles and reviews, appeared by
invitation in Scripta Mathcmatica. A glance at the annual catalogues of mathematics

courses offered at Fordham University during the years of his tenure prove (1)
that Father Steele never taught exactly the same course twice, and (2) that each

succeeding year’s syllabus was a definite advance over the preceding year s attain-

ments. It is obvious that he grew'
wuth his work. Fellow members of the Mathe-

matics Section of the Eastern States Division of the American Association of Jesuit
Scientists will long remember Father Steele’s enormously valuable contributions both

of mathematical wisdom and rich humanist wit to its annual meetings. Kequiescat
in pace.

Aristotle, Physica 4. 8. 2\5
h . The translation here reproduced is that of

W. D. Ross and J. A. Smith, The Works of Aristotle (Oxford: Oxford University

Press, 1908-193 1), volume 2. The same version occurs in The Basic Works of

Aristotle, edited by Richard McKeon (New York: Random House, Inc., 1941),

p. 284.

On this special point see the interesting paper by Carl B. Boyer, An Early
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2.0 ZERO IS NOT NOUGHT

Philosophers, Oriental philologists, and historians of astronomical

science will perhaps also recall that in the positional notation of the

Babylonian sexagesimal number system
4 it was desirable to possess an

indicator for empty places in the sequence of enumeral symbols in

order to avoid possible ambiguities in transcription and interpretation.
But it is important to note that within a sexagesimal system such

empty positions in a numerical expression occur far less frequently
than in a decimal system. No such places, for example, occur at all for

numbers less than sixty, and in only 59 cases for numbers less than

3600, as compared to 917 such occasions in a decimal system. Because

therefore such notational ambiguities arose but seldom in routine cal

culations, the earlier Babylonians who first developed to some techni-

cal perfection a smooth positional system of numeration, felt no

urgent need to invent an emptiness indicator. At some later time how -

ever, most likely in the Persian period, a conventional sign was adopted
to mark whatever empty places did occur in a numerical expression
constructed on the principle of positional notation and local value.

Such Babylonian usage represents what is perhaps the earliest appear-

ance of a symbol for nought:’ But nought is not a number, no more

than the space left vacant between the last letter of a preceding word

and the first letter of the following word in conventional prose script
is to be construed as the twenty -seventh letter of the English alphabet.
For such a gap is not a letter, nor is nought a number, nor finally is

zero nothing but nought.

3.0 ZERO IS A NUMBER

For zero is neither nothing nor nought but a number, as one may
now proceed to show by rigorous and autonomous constructive
methods.

3.1 THE POINT OF FIRST CONSTRUCTIVE DEPARTURE 6

I choose to think now, as an exercise of that splendid freedom

Reference to Division by Zero,” American Mathematical Monthly 50 (1943) 487-
491. Boyer remarks quite judiciously, and I am disposed to agree: "In this quota
tion it is quite evident that Aristotle had the arithmetical zero in mind. It is

clearly distinguished from the philosophical void, and it is regarded as akin to,

although not actually one of, the numbers.” But to be a number, and to be like
a number, are not by any means the same mathematical phenomenon.

For those who are unfamiliar with the structure of a sexagesimal number
system, it may be possible to convey an impression of it by equivalent transposi-
tion into the expressions of a decimal system. Thus for example the number, 1 62,032,
would be written in appropriate symbols as: 45 (60) 2 + 0 (60) + 32.

for a sketch and
survey of the reliable data and remaining doubts in the

long and involved history of zero as nothing, as nought, as notation, as notion, and
in less detail also as number, see Carl B. Boyer, "Zero: the Symbol, the Concept,
the Number,” National Mathematics Magazine 18 (1944) 1-8, and the copious
standard reference literature there cited.

Throughout this challenging essay I aim to be continually conscious of the
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of creative intelligence with which mankind is endowed, of a set S
and a relation R with one antecedent and one consequent. For pur-

poses
of successful and economical communication between us, I de-

cide that such incidence between the antecedent p of R and the

consequent q of R shall henceforward be symbolized in print as

p/q, and read as p stroke q.’ In the subsequent exploration of the

necessarily implied logical consequences of such R over such S the
letters a, b, c, are now chosen to be the names of given elements of S,
while the letters %, y, z are selected to serve as names for elements of S

hypothetically supposed and tentatively entertained until affiliated as

members of S by demonstrative proof. Thinking thus of a set Sand
such a relation R over S, I further choose to investigate now any in-
stance whatever in which the following seven conditions happen to be
the case for S:

(1) there is in S someone element u which is such as described
hereinafter from (2) through (7), and

(2) for every a in S there is at least someone or other element

x in S such that identically in S a/x, and

(3) for every a in S such that a u, there is at least someone

or other element x in S such that identically in S x/a, and

(4) it is not the case that there exists in S an element x such

that x/11, and

(5) for every a in S, if there is a suitable x at all, then there is

at most one such x such that x/a, and

(6) for every a in S there is at most someone or other element

x in S such that identically in S a/x,
and finally

(7) subsets of S comprising u and with v also its consequent
v have empty complements in S. TANARUS)

widely diverse interests and capacities of the general audience. I plan to meet this

challenge of irreducible heterogeneity by the following device and here interrupt

development of the theme to acquaint cooperative readers with the details of its

execution: (1) henceforward the text as such purports to be intelligible to the

high-school graduate who can read and understand idiomatic English; (2) footnote

superscript indices without parentheses are hints to the more capable or to the

more interested to pursue some points a little more deeply than is necessary for

mere comprehension, and (3) footnote superscript indices within parentheses are

pointers to materials designed to satisfy the legitimate demands for justification or

just further curiosity on the part of the technically trained mathematical members

of the audience.
F) No independence is claimed for statements (1) through (7) above. On the

contrary (3) is entailed by (2) and (7) jointly taken. Note in general that justi-
ficatory appeals to (7) regularly fall into two correlated and recurrent stages:

(a) a beginning stage, henceforward designated as Stage B, to prove the assertion

in question true of the special element n in S, and (b) a transference stage, hence-
forward denoted as Stage TANARUS, to prove the same assertion true of v when true of v.

Hereby v thus denotes that element in S which in virtue of (2) and (6) is the

solitary consequent to v as antecedent. The present proof thus proceeds as follows:

select from S a subset S* such that it contains u and all potential consequents.

Stage B: u belongs to S* and thus also to S by explicit choice. Stage TANARUS: when v

belongs to S* and thus also to S, v' exists in S by (2) and is thereby guaranteed to

be a potential (because in fact an actual) consequent, and thus is enfranchised as a

member of S* in S. Hence (3) is entailed by both (2) and (7). But six of the
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3.2 CONSTRUCTION OF A FIRST NEW RELATION OVER S

I continue to think of the same set S as described in statements

(1) through (7) of 3.1, and now propose (i) to construct over $

a f(x,y), such that always throughout S it is the case that

(1) f(x,u) = x' and (2) /(*,/) = f{x,y)'
and (ii) also to show that there is over S only a single such function.
It is more convenient in exposition to reverse the order of (i) and (in

and thus to show (ii) first as

Theorem 1: for fixed c in S there is at most one manner of

effecting

relatively primitive propositions stated above, (1), (2), (4), (5), (6), (7), are

in fact such that each alternative selection of five can be so interpreted that the
sixth in each case turns out to be false under the corresponding interpretation.
Hence these six are logically independent propositions. For the general role of inde-

pendence in axiomatic system structure see my "Contemporary Science and De-
ductive Methodology,” Proceedings of the American Catholic Philosophical Associa-

tion 26 (1952) 94-13 1, and the standard reference literature there listed.
8 It is to be noted that the precise and accurate concept of functionality con-

tains two constitutive elements: relationship and dependency. It may be wise to

open a condensed and elementary exposition of the matter by a fundamental inter-

pretation of the symbol: '/(*)•’ This conventional symbol which is correctly read,
not 'eff-ex’ but 'eff-o/-ex,’ presupposes two clear conditions. The first is this: (1)
a well-defined class of mathematical entities which may here be called K. The letter
'x' may next be chosen to name any one entity from the class K. Such an entity
of such a class is usually called on understandable historical (but deplorable logical)
grounds by the systematically misleading title of 'variable.’ But the unsophisticated
reader should be warned that exactly no kind of change in x is involved, nor is any
kind of change in x at all possible. For each individual mathematical object, such
as a number, is an immutable entity and can under no circumstances whatever
neither suddenly nor gradually be transformed into another mathematical object,
such as another and distinct number. But what may occur is this: a responsible
mathematical intelligence may have good reasons to consider a succession of different
entities, such as different numbers, arranged by previous constructive definition in
someone or other regular sequence. 'Variability’ therefore in the context of func

tionality does not mean nor does it imply 'changeableness,’ but rather 'anyness-over-
a-specified-set.’ The second prerequisite is this: (2) a -well-defined mathematical
relation which

may here be called '/’ and is such that given any one member ,v of
the class K, just one mathematical entity, which we may conveniently call
stands in the relation / to the entity x. The entire situation is neatly symbolized as:

y f(x)- Observe that the set of all such y itself forms a well-defined class which

depends upon the class K and
upon the relation /, and may here be called 'M.

Ihe mathematically free choice of someone or other * from K leads through the
link of the relation / to the bound choice of the corresponding y from M. It is
conventional therefore to refer to such x as the independent variable and to such y
as the dependent variable. The relation / may be constituted in several different
svays: by a computational formula, by a verbal proposition, or perhaps again as a

solution of a problem known on other and independent grounds to possess exactly
one unique solution. A second such relation, if such there be, may be called
,?(*)> a third h(x) and so forth. Moreover to state that / (x) = g(x) identi-
(tilly in x means that whatever be the choice of x from K, one and the same y from
Af will be found to stand to x in both the relation / and in the relation g simul-
taneously. Similarly but with further structural complications there may well
exist functions such as f(x,y), g(x,y), f (x,y,z), or g(x,y,z) of two, three, or n

sariables. Such polyadic functions are based in logical terms upon two-one, three-
cne, or in general many-one relations.
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(3) f(c,u) = c and (4) f(c,y) =f(c ,y)'^\
and then (i) second as

Theorem 2: for fixed c there ;s at least one manner of effecting
(3) f(c,n) =c' and (4) f(c,y') = f(c,y) '. (10)

3.3 Significant Properties of Such f(x,y) over S

The function f(x,y) over S which 3.2 shows to be both existent
and unique, also possesses the following significant logical properties:

Theorem 3: f[f(x,y) ,z] = f[x,f (y,z) ]. < l] )

Theorem 4: f (x,y) = f(y,x)Tl2^

Theorem 5: f(x,y) x and f (x,y) y for every x and y
in S. (1 'P

Theorem 6: if y z, then f{x,y) f(x,z)S 14)

Theorem 7: for given v and y, exactly three strictly exclusive
alternatives hold within S:

(9) Proof: suppose also over S g{c,u) = c and g(c,y') = g(c,y)'. Select then
the subset S* of S containing all v for which f (c,v) = g(c,v). Stage B: the com-
mon value f (c,u) g(c,u) c puts u itself into S*. Stage TANARUS: f(c,v') =
f{c,v)r by the defined character of /, and /(c,v ) g{c,v) by (6) in 3.1, and
finally / (c,v ) g(c,vr) by the supposed character of g. Whence it follows that
v itself is enfranchised for admission into S*. Hence if there is such a function
/ over S, it is unique over S.
(10) Proof: select the subset S* of those xin S which do secure (3) and (4)
above. Stage B: the exploratory choice f (u,y) y' does verify (3) when y = u,
and does furthermore verify (4) for every y insofar as then / (u,y ) = y
f (u,y) . Stage TANARUS: when x verifies (3) and (4) one must again make such a choice
of x that there is again a verification. Choose f(x',y) f{x,y) . Then again (3)
is verified when y u because /(x ,u) —f (x,u ) = x , and (4) is verified for
every y insofar as f(x’,y') = f{x,y')' = f(x,y)" f(x ,y) .
(u) Proof: keep x and y fixed at otherwise arbitrary elements of S. Select
next the subset S* of S which contains all those z for which theorem 3 is valid.
Then Stage B: S* contains u since f\f(x,y),u] —f (x,y) f(x,y) =
f[x>f(y>«) ]• S/age T : when S* contains z, it is the case that /[/(x,y) ,z]
f[x,f(y, z)] and hence /[/(x,y) ,z] = = f[x,f(y,z)]' = f\x,f(y,z)']
= f[x,f(y,z')]. Comparison of the extremes proves that v' is qualified to enter
into S* of S.
(12) Proof: keep y fixed. Select the subset S* of S which contains all those x
which do verify theorem (4). Stage B: theorem (3) guarantees already that
/(u,y) = y and f(y,u) y , so that here at least / (u,y) f{y,u). Stage TANARUS: in
any case f(xr,y) = f (x,y) by theorem 3, and / (x,y) f(y,x) by (6) in 3.1,
so soon as S* contains x, and f(y,x)' f(y,x') by the reverse application of
theorem 3.
(13) Proof: keep x fixed. Select next the subset S* of S that contains those y
which verify theorem 5. Stage B: never is u = x because (4) in 3.1 proscribes
it. But x' f(x,u). Therefore never is it the case that u f{x,u). Stage 7:
given that y —f (x,y) is false over S, then y f(x,y) is also false over S by
(5) in 3.1. Moreover since f{x,y)' f(x,y'), neither is it ever the case that in
S / = /(x,/).
(u) Proof: choose distinct y and z and hold each fixed. Next select the subset
s* of S that contains those x which do verify theorem 6. Stage B: y z entails
y zby (5) in 3.1. Hence by definition / (u,y) =/= f(u,z). Stage 7: given about
x that f(x,y) f(x,z), then f(x,y)' fix,z)' by (5) in 3.1, and therefore it
follows that f(x’,y) f(x',z).
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either Case 1: x =

or Case 2: x = f(y,s) for some s unique by theorem 6,

or Case 3: y = / O',/) for some t unique by theorem 6,

For although the three cases are mutually exclusive, Cu )
a U cannot be

false in S.

3.4 CONSTRUCTION OF A SECOND NEW RELATION OVER S

Theorem 7 in 3.3 furthermore lays down the foundations for the

rigorous construction of a second new binary relation over S, such that

that whenever x y, a condition which thus excludes Case 1 under

theorem 7 in 3.3, then x/y holds in Case 2 and y/x holds in Case 3,
either one of which must in every other instance be the case in S. It

follows immediately that such constructed R 2 over Sis alioalternative
Furthermore such fC over S is also transitive because

(a) x/y exactly when x = / (y,s) for some s,

(b) y/z exactly when y = f(z,t) for some t, and

(c) there then holds by reason of theorem 3 in 3.3 associativity

whereby x = f[f(z,t),s] /[z,/(T,5) ], which is sufficient to estab-

lish x/z through the existence in S of this f{t,s). Hence precisely as

alioalternative and transitive, this new and constructed R 2 over S is

by definition serial.

3.5 CONSTRUCTION OF A THIRD NEW RELATION OVER S

There exists over S one and only one function g(-Y,y) such that
both (i) g(x,u) = « and (ii) g(x,y') = f[g (x,y) ,x] . Such R 3 over

S is likewise associative and commutative or symmetric, and also in

’- 1 " 1 Proof: Cases (2) and (3) are incompatible because if both held in S, then
it would be the case that x = f(y,s) = f[f(x,t),s] = f[x,f(t,s)]. But the ex-

tremes contradict theorem 5. Cases (3) and (1), like (1) and (2), are also
incompatible because they too similarly contradict theorem 5 explicitly.

! ) Proof: keep x fixed. Select the subset S* of S which contains all those y
for which someone or other of the three alternative cases holds. Stage B: when

y u and .v u, then, 3/ = x and Case (1) is given immediately; then y n

and x «, then x=s by (3) in 3.1, whence x / (u,s) f(y,s) which is
an instance of Case (2). Stage TANARUS: let us proceed by distinct parts. Given that y
lies in someone or other of the three Cases, it is required to show that thereby y
also lies in someone or other of the three Cases. The following set of four such
possible connections is relevant:

(a) if y is in Case (1), then y is in Case (3),
(b) if y is in Case (2), withs ==

u, then y is in Case (1),
(c) if yis in Case (2), with s u t then yis in Case (2), and

(and) if y is in Case (3), then y is in Case (3).
If hypothesis (a) holds, then y = f(y,u) —f(x,u) and therefore y belongs to

Case (3) with u in the role of t. If (b) holds then *
= f (y,u) = y', and )'

into Case (1). If ( c ) holds, then s= r = f (u,r) by (3) in 3.1, so that
X flv>f (u >

r) ] /[/(3',w)>r ] f(y\r)» which equips y for Case
(2). Finally if hypothesis (and) holds, when

y
= f(x,t), then y —f(x,t)' by (6)

in 3.1 whereby y is already enfranchised under Case (3) with present t' as surro-

gate for standard t.



47

conjunction with f(x,y ) distributive in the sense that identically in
-v, y, z it is the case that g[x,f(y,z)] = f[g(x,y),g(x,z)].

3.51 FIRST RETROSPECTIVE RECAPITULATION BEFORE ADVANCE

Section 3.1 which served as our point of departure, provided us

with a set Sand a binary relation R over S, such that

(1) S contained u as hereinafter described, and

(2) in S a/x had at least one solution, and

(6) one solution at most, now designated as a, and
(3) unless a = u, at least one solution existed for x/a, and
(5) one solution at most, but

(4) Xi u had exactly no solution in S; finally
(7) subsets of S comprising u and with v also v had empty

complements in S.

Thereupon 3.2 established the existence over S of a first new con-

structed and unique binary relation R,, such that in a functional ex-

pression of R, (i) f(x,u) = x and (ii) f(x,y) =f(x,y)'. Section 3.3

then explored the logical consequences of R
z over Sand demonstrated

that (i) /(x,y) is both associative and symmetric, (ii) never is

f(x,y) =xor / (x,y) =y, (iii) y z entails f (x,y) f(x,z), and

(iv) strictly either * = y, or x= f(y,s) or y= f (x,t ) for some

suitable s or t. Next 3.4 undertook to establish a second new binary
relation R> over S, such that when x y, then x/y holds if x

f{yy), but y/x obtains whenever y = f(x,t). Section 3.4 concluded
this exposition by showing that because R> over S is both alioalternative

and transitive, it is therefore serial over S. Finally section 3.5 undertook

to establish the existence of a third new constructed and unique relation

R.t over S such that (i) g(x,Ji ) =x, and (ii) g(x,y') = f[g(x,y) ,x],
so that (iii) R 3 is both associative, commutative or symmetric, and
distributive with R

t
in the sense that identically in x, y, z it is the case

that g[.Y,/(y,z)J = f[g(x,y),g(x,z) J. It is essential to our present

purposes to realize at this point that each and every such construction,
each and every such existence, each and every such uniqueness, each

and every such demonstration was achieved solely from the data of the

relatively primitive propositions (1) through (7) of 3.1 together with

the resources of the logic of relations antecedently to and independently
of any recognition of exemplification or occurrence of some such set

S within or without mathematics. Moreover while the construction

from 3.1 through 3.5 resembles somewhat the pioneer work of Peano

( 1858-1932) 1 ' and less so that of Frege (1848-1925) ,ls there arc

significant differences from both Peano 1 1!l) and Frege. (J "’

17 Giuseppe Peano, [l] Arithmetics principia nova methodo cxposita (Torino:
1899); [2] “Sul concetto di numero,” Rivista Ji mathematica (Torino) 1 (1891)

87-102, 256-267; [3] Formulaire de mathematiqu.es 1 (Torino: 1 895 ), 2.1

(Torino: 1897), 2.2 (Torino: 1898), 2.3 (Torino: 1899), 3 (Paris: 1901), 4

(Torino: 1902-1903), 5 (Torino: 1905-1908).
1R

Gottlob Frege, [IJ Die Grundlagen der Arithmetik, eine logisch-mathematische
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4.0 THE ABSTRACT BUT NOT ABSTRACTED CHARACTER OF S

Up to this point therefore the nature of the elements of Sand of

the respective relations over S have consistently been of exactly no con

cern whatever to the successive processes of autonomous construction

For conscious attention has been exclusively centered upon the merely

logical (and not ontological) character of the relations over S, and

steady concern exhibited for the elements of S only insofar as thev
functioned respectively and alternately as the antecedents or the const

quents of the several relations over S. FJence the elements of S are now

known to us only as the relata of the relations over Sand correspond

ingly the relations over S are now known to us only as the links that

correlate the elements of S. Nor is such knowledge in any way defi

cient because the elements and relations of S are only the elements and

Untersuchung iiber Jen Begriff Jer Zahl (Breslau: 1884), and [2] Grundgesetze
der Arithmetik, begriffsschriftlich abgeleitet 1 (Jena: 1893 ), 2 (Jena: 1903)

Item [l] was reprinted at Breslau in 1934 and with interpaginal English translation

by J. L. Austin at New York, Philosophical Library, 19 50.

( I9) Peano’s mathematical researches sought a set of relatively primitive prop

ositions upon which to establish arithmetical science. Exactly in the manner of

Euclid and Euclid’s own authorities, Peano analyzed backwards from the middle

of the scientific arithmetic of his time. He therefore set down as an adequate
foundation for the structure of all fundamental arithmetic three undefined print:
tive terms and five unproved propositions, as follows: (a) undefined terms: unit'd,
numero, successivo; (b) unproved propositions: (1) l’ unita e an numero, (2)

il segno + messo dopo un numero produce un numero, (3) se A e B sono due numeri.

e se i loro successivi sono eguali, anche essi sono eguali, (4) /’ unita non seque

alcun numero, (5) se S e una classe, contenente l’ unita, e se la clttsse formula dm

successivi di S e contenuta in S, allora ogni numero e contenuto nella classe S.

Comparison with sections 3.1 to 3.5 in the text will show that the entire present

treatment is a more refined relational distillate of the pioneer work of Peano. The

principal differences in this connection are two: (1) preference is here shown to

the term 'consequent,’ taken from the abstract logic of relations, rather than to the

too concrete term of Peano 'successor’; (2) sections 3.2 and 3.5 take cognizance
of the necessity to prove the uniqueness of f(x,y) and g(x,y) over S, as taught b-,

Grandjot and Kalmar and neatly summarized by E. Landau, Foundations of Analysis
(New York: Chelsea Publishing Cos., 1950). Moreover the reader should note that

the above construction does not proceed like Peano in other versions from a stipu
lated 0 as appendage to the natural numbers, but awaits its later and independent
construction.

I 2o * Frege took capacity for biunivocal correspondence or cardinal similarity a:

an equivalence relation between sets and construed each separate resulting class a

a cardinal or natural number. It is essential, but sometimes difficult for the tyro,

to understand that for Frege the class was the number. In order to obtain sums,

Frege first proves that from two given classes of sets some member set may be

so chosen from the former and some member set from the latter that the two

selected sets are disjoint; thereupon one constructs anew set by way of a logical
sum function: 'belonging to the one or to the other;’ finally this new set is shown

to lie in the same class no matter what representatives from the original classes vj
sets are chosen. Thus this new class is the additive relatum of the classes first taken

In order to obtain products, Frege chooses representatives as above and then con-

structs by a logical product function anew set consisting of all couples such that

their prior members are in the prior set and their posterior mem,bers in the pos-
terior set. Since this class to which the set of couples belongs, depends only on the

original classes no matter what representatives are chosen therefrom, it is a func-

tion of them, called the product function.
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relations of S. At no time therefore was the fatuous attempt made

to explain what the elements of S are supposed to be because the elements

of S are not supposed to be anything other than the elements of S.
Similarly at no time was an effort made to explain what the relational

system of S was all about, simply because S is identically Sand is not

about anything else whatever other than S.

4.1 A RELEVANT MATHEMATICAL INTERPRETATION OF S

But it is a fact that the - relational morphology of S which is

open to very many and widely diverse kinds of interpretation, can at

least be so interpreted within mathematics that its logical structure is

seen to be realized in a very familiar domain, that of the natural num-

bers. For one may interpret the member elements of S as the natural

numbers in such wise that the special element u is identified as the num-

ber 1, and the remaining natural numbers specified on the plan that

l' = 2,2' —3, "S’ = 4, etc., as was first suggested by Leibniz. More-

over / (x,y) is successfully interpretable as x -f- y and g(x,y) as xy.

Finally the initial binary relation x/y may be construed as x > y and

conversely by convention y < x. Thereupon the following arithmetical

propositions cease to be mere arbitrary rules of arithmetical computation
which somehow just happen to work well, or even baseless conventions

accepted by a polite gentlemen’s agreement, and attain the desirable

status of rigorously demonstrated theorems:

(1) * + (y + Z) = (X + y) + Z,

(2) x -j- y = y — x,

(3) strictly either V = y, or x > y, or x < y, and

(4) y z entails x y x -\- z.

In this manner the entire arithmetic of the natural numbers can be

constructed from a competently declared set of relatively primitive
propositions, suitably interpreted. There is therefore now at our dis-

posal for future purposes the entire set of natural numbers but only
as yet the set of natural numbers: 1,2, 3, etc. -1

21 For future purposes certain attributes of natural numbers will be useful

and are here listed together for ease in reference without further proof:
(1) a + b in the set and unique,
12) a

-j- (b +c) (a +b) +c,
(3) a -f- b b -(- a,
(4) a -(- x b but not always solvable in the set,

(5) ab in the set and unique,
(6) ab.c = a.be,
(7) ab ba,
(8) a(b -j- c) = ab + ac,

(9) x “f" y x for all x and for all y,

(10) a -)- x =
a -f- y entails x y.

Attention is called particularly to items (10) and (4). Item (10) states that if

subtraction is possible at all, then it is unique. Item (4) announces that subtraction

is not always possible in the set.
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4.2 SECOND RETROSPECTIVE RECAPITULATION BEFORE ADVANCE

We thus stand now at a firm place in intelligence whence we may
with a rigorously certified logical license descend along the autono-

mously constructed scale of the natural numbers from whatever mem-

ber you please down to ...
5,4, 3,2, 1 STOP! But we lack at this

stage the right to proceed in good conscience from whatever member

you please to whatever member you please along the integer scale . .
—(— 5, -(-4, -f-3, -j-2, —J— 1,0, —l, —2, —3, —4, —5,

....
And in

particular we still lack the pivotal number zero. It is furthermore

already clear from section 1.0 that although we all may, as a popular
ballad puts it, 'have plenty o’ nothin’,’ yet zero is not nothing, and

therefore nothing will not supply to us the number zero. Moreover,

although it be little enough trouble to invent a suitable symbol for

nought as an emptiness indicator in a positional number system, still

zero is not nought either and hence nought is no substitute for the

legitimate number zero. And at least one good reason for both of these
failures is this: the number one and nothing, and the number one and

nought, have exactly no defined sum at all, whereas the number one

and the number zero do have a unique defined sum, i.e., the number 1.

At this point then there may perhaps arise in the mind of the im-

patient listener the revealing question: "But why in the world should

one be seriously concerned correctly to define zero, since it would

appear in effect that the entire enterprise is nothing else but just an-

other case of much ado about nothing?” Some may therefore be in

dined to rest content with the unreflective and crassly pragmatic use

of conventional symbols, rules, and recipes that just happen to work

well in computational experience. But such a question and such an

attitude set a grave crisis for the truly mathematical conscience and

at one stroke separate the men from the boys in the world of hones:

intelligence. By way of reply one may then heed the explicit ideals

of Plato, the sharp criteria of Gauss, and the pathetic sighs of our

Father Clavius. In the Cratylus 4398, for example, Plato remarks as

representative spokesman for conscientious mathematicians: "We have

to rest content with the confession that our study and research must

be conducted, not on the strength of names, but on the strength of

things themselves.”-' 1 And the great Gauss in similar authentic mathe-
matical vein declares with reference to a certain theorem of Waring
[p/1 + (p —1) !]:

. . . Theorema hoc elegans primum a celeberrimo Waring [ 1734-

1798] est prolatum, armigeroque Wilson [1741-1793] adscrip-
tum . . . Sed neuter demonstrare potuit et celeberrimus Waring
fatetur demonstrationem eo difficiliorem videri, quod nulla notatio

hngi possit, quae numerum primum exprimat. At nostro quidem

Aya,7ttjtov Se Kai tovto ofxoXoyrjijacrOat, on ovk e’% ovofiarwv, aAAa
tto\x< jj/IXXov avra et avrwv /cat fj.aOrjTf.ov Kal £rjTTjTeov rj ek twv ovofianov .
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iudicio huiusmodi veritates exnotionibus potius quam
exnotationibus hauriri debebant. 23

It is apparent how closely the sentiments of both Plato and Gauss
coincide with respect to the ideally rigorous criteria that rule the
mathematical enterprise. There is finally perhaps no more pathetic
passage in all humanist literature than the poignant anxiety of a very
candid Clavius:

. . .
Causa autem huius rei in multiplicatione numerorum cossi-

corurn [e.g., x,y, x~, y 2, etc.], et signorum -f- et —, reicienda

videtur; et debilitas ingenii humani accusanda, quod capere non

potest, quo pacto id verurn esse possit. Neque enim de ratione

praedictae multiplicationis dubitandum est, cum ilia per multa

exempla sit confirmata. 24

The challenge to intelligence set by Clavius is clear. Either the Rule-

of-Signs in multiplication is simply a brute enigma, a mathematical

fact inscrutable to human reason, or else the inventive ingenuity of

creative intelligence can construct the existence of the negative, null,
and positive integers out of the raw materials of the natural numbers

and thus transform the Rule-of-Signs from an unintelligible conven-

tion into a demonstrated theorem. Let us accept the challenge and try

our hand at a solution.

5.1 THE POINT OF SECOND CONSTRUCTIVE DEPARTURE

When the following differences exist at all in the domain of the

natural numbers, 20
we already know that when a, B, and A, b are

pairs of suitable naturals

(1) (a —A)—(b— B) if and only if a B= A -j- b,

(2) (a —A) +(b B) =(a -f- b) (A + B), and

(3) ( a —A) (b —B ) = ( ab -f- AB ) (aß -f- bA).
Such pairs of natural numbers with such pair properties first suggest

an attempt to work out a constructive extension of the number domain

by using the set of all couples of naturals: [it,A], [b,B], [s,S],

[p,P], and then to establish over them exploratory (hence here paren-

thesized plus and cross) additive and multiplicative relations, so that

(i) [it,A] (-}-) \b,B] =[a b, A-(- B], and

(ii) [a,A] (X) [b,B] = [ab + AB, aB + bA],
and finally to examine how far, if at all, the newly constructed relations

over couples of naturals are analogous and thus comparable to the

existing addition and the existing multiplication relations over the

existing individual natural numbers. Close inspection discloses that

(i) and (ii) are indeed quite similar to the original addition and multi-

23 Disquisitiones arithmeticae, 76. See the Werke, I, p. 60.

24 Algebra, 6. See the Werke, 11, p. 17 of the Algebra pagination.
25 Consult footnote 21 of this essay and compare

therein especially items (10)
and (4).
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plication but actually yield no increased power of substraction. For

example: [7,5] + [x,X] = [3,2] would thus be an identity that

requires both that 7 -j- x = 3 and that 5 j AC = 2 among the

natural numbers. But the latter two identities are there impossible by
default of such an x and such an X. To proceed further therefore

along this road in the same direction would be to come to the dead end

of a blind alley.

5.2 A NEW DIRECTION FROM THE SECOND DEPARTURE

But one may perhaps successfully salvage the original hunch de-

rived from an inspection of a certain discernible behavior of the natural

numbers, and continue to explore the constructive possibilities of

working with couples of natural numbers from a different approach
and with anew and different strategy. In the designedly empty matrix

diagram below, write in at random at most one entry each for every
representative sample couple of the natural numbers selected for

reasons of graphical simplicity only from 1 to 9 inclusive, such as

(1,9), (8,2), (2,8), (3,3), etc.

DIAGRAM I

In the completed diagram above let us now examine together this
exhaustive sample array of appropriate couples of naturals from Ito 9.
The first observation is this: either the chart exhibits no recognizable
order at all, or at most an incomplete and imperfect pattern, and cer-

tainly in no case a consciously constructed and rigorously controlled
one. The second and significant observation is this: each and every
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couple of naturals verifies at most but one or another of the following
three alternatives:

(1) either there is no serial difference between the prior and

posterior members of a couple, such as (3,3),
(2) or the prior member is serially later than the posterior mem-

ber, such as (6,2),
(3) or the prior member is serially earlier than the posterior

member, such as (4,5).

Now to the mathematically sensitive conscience these three strict

alternatives which thus obtain over couples of naturals supply a sound

basis for the extension of serial order beyond the natural number do-

main, provided we have the wits to devise an effective logical tech-

nique to exploit and control it for constructive purposes.

5.3 CONSTRUCTIVE PROCEDURE FOR A DIAGONAL CALCULUS

In order to exploit such given but latent possibilities for the

construction of a richer and more extensive realm of serial order out

of the raw materials of couples of natural numbers, let us attempt to

classify and to distribute on appropriate diagonals all the couples of

Diagram J according to the criterion that the couples and [.v,X]
are to be admitted to the same diagonal if and only if a -)- X

A -(- x, so that for example on this criterion the couples (1,1), (1,9),
(9,1), and (9,9) qualify for the positions allotted to them in Dia-

gram II below. On the same criterion and after the same manner

fill in all the remaining places in Diagram II with the appropriate
corresponding sample couples from the array in Diagram I.

Hence by classifying couples of natural numbers according to the

criterion that two such couples fall into the same class and on the

same diagonal if and only if the above relation holds, and otherwise

into different classes and diagonals, we make Diagram II effectively
exhibit individual classes of couples of naturals as individual diago-
nals.^ In order now to consolidate this present advance and to

facilitate communication for further progress, let us agree to write

(1) square brackets, [a,A] for individual couples of naturals,

(2) round parentheses, (a,A) for the diagonal containing all such

[a,A'], and

(3) three horizontal strokes, =, to mean 'is a diagonal-mate or

class-mate of.’ Hence by these conventions a B= b -f- A, [tf,A] =

[b,B\, and (a,A) = (b,B) are synonymous.

5.4 THE CONSTRUCTION OF DIAGONAL QUASI-SUM

Among the natural numbers it is the case that a -j- P A -f" p
and b -)- Q = B -f- t/ jointly entail that {a -f- b) -j- (P -j- O)

K In a perspective broader than our present one, it is a problem in modern

logic to determine precisely when a one-to-one relation does in this manner effec-

tively produce an exact partition of a set into distinct and non-overlapping sub-

classes. But in the present simple and logically privileged case the above relation

is seen immediately to achieve this result.



DIAGRAM II

(A -j- B) -\- (p -j- q). Hence on the criterion of the present class-

mateship condition (a,A) = ( p,P j and ( b,B) = (q,Q) jointly entail

(a -|- b, A -\- B) =(p -\- q, P Q). But this is to say in other

words that the diagonal to which \a -(- b, A -j- B] belongs is deter-
mined solely by the diagonals to which [a,A] and [b,B ] severally
belong, and not at all by the actual choice of a representative couple
from any diagonal. But this is to say in still other words that the
actual diagonals, as newly constructed mathematical entities, enter

into a relation induced by a previous and existent relation between

diagonal constituents. Let us therefore provisionally be permitted to

call (a -j- b, A -j- B) the quasi-sum of (a,A) and ( b,B ), sum because
this designation will soon be justified, and quasi because such necessary

justification is yet to come.

5.5 THE CONSTRUCTION OF DIAGONAL QUASI-PRODUCT
The conditions set in 5.3 under which the individual duplexes

[ a ’A] = [p,P] and [b,B] = are respectively a -|- P == A -f- p
and b -)- Q— q B, may furthermore be multiplied on both sides,
the former by b and B, the latter by p and P, so that

(1) (a P) b= (A -{- p) b,
(2) (A + p)B = (a + P)B
(3) (b -f- Q)p == (q -f- B) p, and
(4) (q + B)P = (b + Q)P.

54
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By adding as one may among naturals and cancelling as one also may

among naturals, it turns out that

(5 ) ab +AB + pQ +qP=aß -f ha + p q -f PQ.
But th£ reader will observe that the identity in (5) states explicitly and

exactly both the necessary and sufficient conditions that

(6) (ah + AB, aB + Ab) = (Pq + PQ, pQ + Pq).
But what (6) says in the precise notational symbolism adopted in 5.3

is that the diagonal to which [ah -f- AB, aB -(- Ab] belongs is deter-

mined solely by the diagonals to which [a,A] and [b,B] severally
belong, and not at all by the actual choice of a representative couple
from any diagonal. In other words the actual diagonals, as newly
constructed mathematical entities, enter into a relation induced by a

previous and existent relation between diagonal constituents. Let- us

therefore provisionally be permitted to call (ab -j- AB, aB + Ab)
the quasi-product of (a,A) and (b,B), product because this term

will soon be justified, and quasi because such justification is yet to

come.

5.6 THIRD RETROSPECTIVE RECAPITULATION BEFORE ADVANCE

It is important now for purposes of future progress to pause at

this point, to reconnoitre the traversed terrain carefully, and to deter-

mine exactly what is the anatomical structure of this newly con-

structed diagonal calculus. In order to make such analysis effective,
it is necessary to introduce and to describe briefly the mathematical

concepts of group and ring.
The notion of group is fundamental in all branches of mathe-

matics. It acts like a staining fluid in biological research. For so soon

as the notion of group is injected into any mathematical theory, it

instantly reveals intuitively unsuspected but centrally important struc-

tural details. By definition a set which is argument-closed and value-

closed with respect to someone or other associative two-one relation is

called a group. If therefore some set S is to qualify as a group rela-

tive to f, the following four and no fewer than four conditions must

jointly be met:

(1) S contains, if x and y, then also a unique z with z = f(x,y),
(2) S contains, if .r and z, then also a unique y with z = f(x,y),
(3) S contains, if y and z, then also a unique x with z = f(xA)i

and finally
(4) f(x,y) is associative always.2 '

Even introductory manuals on the theory of groups do not denote the

/-relatum of x and y by the unambiguous functional notation f(x,y), but by a

conventionally standardized use of the product symbol xy, whereby xy names

that element of the group which stands in the group relation to x in the first place
and to y in the second place. Such idiomatic use of the product notation in group

theory soon becomes convenient and harmless, but it may be misleading initially to
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Whenever the above conditions (1) through (4) are satisfied for am

set S, then it is possible to prove as a further demonstrated theorem

that every such group contains just one element, here called its

neutrum, and symbolized by e, such that x f(x,e) = f(e,x) ior

• 1 2-8
every x in tne group.

Groups are therefore closed with respect to one function, called

above f(x,y). Rings are groups with respect to two functions, hen-

after called S(x,y) and P(x,y). By definition therefore a set R ,
called a ring relative to the functions Sand P if and only if it meet

the following eight and no fewer than eight conditions distributed into

three distinct classes:

(A) with respect to S alone:

(1) R contains, if a and b, then a unique S(a,b),
■ (2) S is associative,

(3) S is also commutative,
(4) R contains a unique solution for x such that S(rf,v) —b,

(B) with respect to P alone:

(5) R contains, if a and b, then a unique P (a,b),
(6) P is associative,

(C) with respect to Sand P jointly:

(7) Sand P are left distributive, so that P\a,S(b,c) ]
S[ P (a,b) ,P(a,c) ], and

(8) Sand P are right distributive, so that P[S (b,c) ,a ] =

S[P(b,a) ,P(c,a) ].< 29 )

Comparison between items (1) to (4) of the conditions for a group
and items (1) to (4) of the conditions for a ring discloses immedi-

ately that with respect to their S-function rings are commutative

groups, and as groups fall therefore under all generalized group

the layman. For it conceals the 7?o/7-trivial character of associativity and renders
the occurrence of non-commutative groups a mathematical phenomenon that seems

more strange than need be. The beginner may reasonably be disconcerted to find
in such groups that

xy yx, where he would presumably not be at all dismayed
to discover that f(x,y) f(y,x).

In the product notation conventional in group theory and mentioned in foot

note 27, the present neutrum is called after the neutrum for multiplication 'unit
element of the

group, or sometimes 'identical element,’ or again sometimes 'principal
element.’ The present reasons for preferring neutrum are similar to the motives
mentioned in footnote 27.

( 1 Requirements (5) and (6) for P correspond to (1) and (2) for S. But
note that no such demand is made of P as P (a,b) —— P(b,a), corresponding to (3)
ior S, nor is it stipulated that R contain a unique solution for x in P (a,x) b.
But such attributes may in fact happen to belong to R without explicit requirement.
If so, then a ring R in which always P (a,b) = P (b,a) is called a commutative ring.
But since R need not thus be commutative, items (7) and (8) must separately be

specified. For (7) and (8) are not balanced by requirements that S[a,P (b,c)] =

P[S(a,b),S(a,c)]. Hence the above definition of a ring R is unsymmetrical in
S and P. Any want of

symmetry in the results obtained by the investigation of the

logical structure of rings derives from this basic imbalance as point of origin.
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theorems. Hence each ring also contains one and only one element,
here called its S-neutrum and symbolized proleptically by the lower

case Roman alphabet letter 'o’, such that S(d,o) = S(o,a) = a for

every a in the ring. Whence it can be further demonstrated that

every ring element b also verifies P(b,o) = P(o,b ) = o.

It is therefore now possible to state succinctly and clearly that

retrospective analysis proves that the new diagonal calculus, built upon
the elements and relations previously existent within the natural num-

ber system, is a ring construction. It is enough here to verify only
the most delicate and decisive S-function item. The problem is there-

fore precisely this: given any two diagonals (a,A) and ( b,B ), is it
the case that there is one and only one unique diagonal (x,X) such
that in quasi-addition (a,A) (x,X) = ( b,B )? In reply note first

of all that (x,X) = (b -\- A, a -|- fi) certainly is one solution, because

{a,A) -f- {b — j- A, a -j- B ) =(a -}- b -)-A, A -j- a B ) = ( b,B )
since simply a b A -j- 23 == A -f- —}— B -j- b. Furthermore

were (y,Y) another and distinct solution, then a y B A

-j- Y -|- b, so that y B -f- a— Y -(- Ab, and finally
that after all (y,Y) =(b -f- A, a -)- B) = (a',X).

5.7 A COMPREHENSIVE CENSUS OF THE NEW DIAGONALS

Among natural numbers, and given a and A, it is the case in

terms of strict alternation that

(1) either a-\-l=A-\-l-\-x for a certain x,

(2) or for a certain v,

(3) or a -j- 1 = A 1 altogether.

Now these three exhaustive and strictly alternative cases among the

naturals take turns to yield the corresponding three alternatives among

the diagonals:

(l
r

) either (a,A) = (1 -)- x, 1),
(2 ) or (a,A) = (7, 1 -f- x),
(3') or (a,A) ( 1, 1 ).

Whenever therefore x ranges over the entire domain of the naturals,
the three primed formulae above deliver between them a complete
census of all the diagonals, and each one once only, a conclusion which

can be tested by reference to the completed Diagram II in section 5.3.

( 30) Given, as above, as a group theorem verified in every K with respect to the

S-function over R that S(a,o) S(o,a) —a, substitute therein a— P(b,o), so

that S[P(£,o),o] = P(b,o)\ then by further setting a—o in S(a,o) = S(o,a) a

expansion shows that S[P (b,o) ,o] = P[£,S(o,o)] S[P (b,o) ,P(b,o) \ by item

(7) of the conditions for a ring. Comparison moreover of the preceding extremes

discloses that S[P(6,o),o] = S[P (b,o) ,P (b,o) ] which share both a common identity
and a common first argument. Hence the second argument of S therein must by
virtue of the uniqueness assured in item (4) of the conditions for a ring, also be

common and such that o
== P(b,o). In similar manner it can be shown that

o P (o,b) ■
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5.8 THE NEW DIAGONALS AT LEAST AS RICH AS THE

NATURAL NUMBERS

Of these three categories of exhaustively all the diagonals con-

sider now only the first, typified by the normal representative formula:
( 1 -}- x, 1 ) . Performed within the confines of this specified subclass
of all diagonals, diagonal quasi-addition constructed in 5.4, and

diagonal quasi-multiplication constructed in 5.5, deliver respectively
the following diagonal quasi-sum (S) and diagonal quasi-product (P,

(S) (1 +V,l)+ (1 + n=■(2+ * + % 2), and

(P) (1 +x, 1) X (2 +y,l) = (2 +*+ y + xy,2 + x + y),

each of which may be further simplified to read as

(S') (1 + x, 1) + (1 + y, 1) =(1 + X-f y, 1), and

(P') (i +v, i) x (i +% n = U + xy, i),

where all sums and products within parentheses are natural sums and

products, and sums and products between reverse parentheses are

quasi-sums and of diagonals. Close analytical inspec-
tion of (S') and (P') will reveal that the quasi-sum between diagonals
on the left side of (S’) is a function of the sum between naturals
within parentheses on the right side, and correspondingly that the

quasi-product between diagonals on the left side of (P ) is a function
of the product of the naturals within parentheses on the right side. If
therefore one were to exploit the connections thus transparently re-

vealed, and pair off the diagonals of this (1 -j- x, 1 ) category of
diagonals against the original natural numbers v and y on the pat-
tern that (i -j- x, 1) is uniquely correlated with natural x and
(f ~b y, l ) with natural y ,

then thereafter without exception quasi-
addition and quasi-multiplication of diagonals on the left sides of

(S') and (P') would keep constant and coordinate step with ordinary
addition and multiplication of naturals within parentheses on the right
side of (S ) and (P') respectively. To establish such correspondence
in a biunivocal manner is to recognize at one fell swoop that the natural
numbers are now reconstituted as an isomorphic subdomain of tlx
entire realm of all the diagonals. For by the formal notion of iso-

morphism is here meant a one-to-one correspondence C between the

objects and relations of a mathematical structure M and the objects
and relations of a mathematical structure Mr

,
where relations of order

n correspond to relations of order n , and such that whenever a rela-
tion R holds between the objects of M, the corresponding relation R
under C holds between the corresponding objects of M', and conversely,
But it is here demonstrably the case that for every sum and respec-
tively product among the domain M of the natural numbers there
coriesponds one and only one quasi-sum and respectively quasi-product
in the M domain of the (1 -\- x, 1) diagonals, and conversely. Ihe
c iagonal calculus therefore is at least as rich in resources of serial
Older as the domain of the natural numbers.
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5.9 THE NEW DIAGONALS RICHER THAN THE NATURAL NUMBERS

But if the elaborate construction of the diagonal calculus were

at most only as rich in resources of order as the domain of the natural
numbers, then would the fraternity of professional mathematicians

merit perhaps the opprobrium of the populace for having much to do
about nothing in their search for a legitimized zero. But it is happily
demonstrably the case that the diagonal calculus is incalculably richer
than the domain of the natural numbers. For the careful reader may

now recall in a flash of insight that in footnote 21 to section 4.1

wherein the set S was interpreted as the set of natural numbers, certain
attributes of the natural numbers were listed and in particular item

(4) to the effect that within the domain of the naturals a -j- x = b

but not always solvable in the set. For the serial order of the domain

of natural numbers is severely limited. In particular the equation
2 -(- x=l is among the natural numbers frankly unsolvable.

31 But
if one now substitutes for the natural number coefficients in this

equation their addition-true and multiplication-true diagonal isomorphs,
so that 2 -) x = 1 is transposed to read (3,/) -(- (x,X) = (2,1), a

unique solution exists and is readily identifiable as the diagonal
( x,X ) = (7,2) because (3,7) -f~ (7,2) = (4,3) = (2,7) which on

the isomorphic pattern of (7 -(- x, 1 ) to x, corresponds to 7.32 Where

then the resources of serial order fail to keep pace within the natural

number domain with the fertility of the relations constructed over it,
there is no alternative but to enter the realm of diagonals and therein

subtract the diagonal isomorph of natural 2 from the diagonal iso-

morph of natural 7. This result really does exist in the realm of

diagonals, but it is a diagonal which is not the isomorph of any natural

number.

6.0 THE DIAGONALS AS POSITIVE AND NEGATIVE INTEGERS

But a diagonal, as Gertrude Stein or even Aristotle would remind

us, is a diagonal is a diagonal. Hence if the diagonal (2,1) is a num-

ber, so too is the fellow-diagonal (1,2) likewise a number. Now

therefore that the process of rigorous construction is happily com-

pleted, and there is little danger any longer that familiarity with

symbols in computation may breed logical slovenliness with respect
to their intellectual justification, we may safely revert to conven-

tional practice and regard the diagonal typified by (1 -f- x, 1) as

m Nor should the reader allow a superficial and deceptive analogy between the

new (a,A) and the old a— A tempt him thoughtlessly to put x = (1,2). Such

procedure is sheer nonsense insofar as a statement like '2 T (1,2) = V attempts to

add elements so disparate as an individual natural number and an individual class of

couples of natural numbers.
"2 It is not true that what mathematical convention knows as the negatively

signed integer —l, results from subtracting the natural number. 2 from the natural

number 1. This is a pseudo-process that cannot be performed nor even its idea

countenanced by an honest mathematical conscience.
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synonymous with + x,
33 and correspondingly the diagonal typified b\

l _|_ x) as synonymous with —x. At this point therefore let us

revert to the correctly completed Diagram II in section 5.3 and in-

scribe thereon as labels at the top of each but the first vertical
column and from left to right the corresponding negatively signed
integers on the representative pattern (1, 1 -)- x) to —x, and in the

sequence therefore — l, —2, —3, —4, etc., and similarly at the left

of each but the first horizontal row in descending order from top to

bottom the corresponding positively signed integers on the representa
tive pattern ( 1 —j— x, i) to -|- x, and in the sequence -)- 1, -J- 2,
—{— 3, —{— 4, etc.

34

6.1 NOW NOTHING REMAINS OR NOUGHT IS LEFT BUT ZERO

Fixation of reflective attention upon the completed and now sig-

nificantly ornamented Diagram II of section 5.3 will disclose that the

serial order riches of the diagonal calculus, already far superior to those

of the natural numbers, are not yet exhausted. For there remains
solitary and unique among all the diagonals the central one, distin-

guished from all of the others above and below by the mark that
both of the components of each of its couples is identically the samt

natural number. But although different and distinct, this central

diagonal is nevertheless a diagonal among its diagonal peers, sharing
without compromise or exception exactly all of their mathematical

theory, equally enfranchised by rigorous construction and equally
existent, and—philosophers please note —completely innocent of all
reference to counting where there is nothing to count. It is the diago-
nal typified by (1,1), symbolized by 0, and called not nothing nor

nought but the number zero.
35

Not with natural number x of course. Whoever does not now see the
reasons ror this should begin again to con this essay from its first pages.

Here it is perhaps opportune to redeem the pledge provoked by Clavius

mournful challenge in section 4.2 to transform the status of the Rule-of-Signs from

a mere gentlemen’s agreement that just happens to work well in computational ex-

perience to that of a demonstrated theorem. Such proof may perhaps most brief!)
be conveyed by carrying out the process of a simple multiplication in the diagonal
calculus: (1,2) (1,2) (5,4) by the definition of class product among diagonals,
and [5,4) = [2,l] by the definition of classmateship, and the normal representative
(2,1) is isomorph to 1. The Rule-of-Signs thus becomes a demonstrated theorem

because (1,2) is synonymous with —1 after the normal representative pattern of
correspondence of (1, 1 -f- x) to —x, and (2,1) is synonymous with ~b 1 after the
normal representative pattern of correspondence of (1 -f- x, 1) to 4“ x. But two

further observations are relevant: (a) one cannot however write (1,2) (1,2) = 1
because isomorphism is not identity of individuals, but one may of course con

veniently agree to write elliptically for economical reasons 1 instead of "h 1 ; (b)
the Rule-of-Signs thus becomes a theorem but only by the grace of the principle of
isomorphic subdomain.

Three final comments are perhaps in order here: (1) note in general that
there is no direct contact whatever between the domain of the natural numbers and
the realm of the general integer classes, but indirect contact is won by the fact that
the natural numbers are isomorph to the positive integers which are themselves
homogeneous with the general integer classes; (2) order among the integer classes
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must also be contructed abstractly and independently; finally (3) rich in serial

order as is the system of the positive, null, and negative integers when thus con-

structed in their capacity as a difference ring over the natural numbers, the integer
domain is not yet rich enough to take care of the logical fertility of the relations
established over it and therefore requires extension by further rationally motivated,
critically executed, and autonomous construction of the realm of the rationals, the
irrationals, or the real and complex number domains. But in each case the pro-
cedure is similar and proceeds according to the principle of isomorphic sub-
domain. I close with a selected bibliography on the topics of this essay which pays
attention to details of historical development: [l] E. Study, "Theorie der gemeinen
und hoheren komplexen Zahlen,” Enzyklopiidie der mathematischen Wissenschaften
1. 1 (1899). 2; [2] K. Th. Vahlen, Abstrakte Geometrie (Leipzig: Teubner, 1905),
1, pp. 7-52; [3] E. Steinitz, "Algebraische Theorie der Kcirper,” Crelle 137 (1910)
167-308; [4] O. Stolz and J. A. Gmeiner, Theoretische Arithmetik (Leipzig:
Teubner) 1: rationale Zahlen2 (1911), 2: reelle und komplexe Zahlen2 (1915); [s]
H. Wieleitner, Die sieben Rechnungsarten mit allgemeinen Zahlen (Leipzig: Teubner,
1912); [6] O. Hoelder, Die Arithmetik in strenger Begriindung (Leipzig: Teubner,
1914);- [7] A. Loewy, "Die Grundlagen der Arithmetik,” Lehrbuch der Algebra
(Leipzig: Veit, 1915); [B] H. Wieleitner, Der Begriff der Zahl in seiner logischen
und historiscben Entwicklung 1 (Leipzig: Teubner, 1918); [9] O. Perron, Irrational-
zahleti (Berlin and Leipzig: de Gruyter, 1921); [lo] A. Pringsheim, Vorlesungen
iiber Zahlen- und Eunktionenlehre (Leipzig: Teubner) I.l* (1923), 1.3 (1921 );
[ll] E. Landau, Grundlagen der Analysis (Leipzig: Akademische Verlagsgesell-
schaft, 1930), reprinted in German and separately issued also in an English trans-

lation by Chelsea Publishing Cos., New York, N. Y., 1951; [l2] Roy Dubisch,
The Nature of Number (New York: The Ronald Press, 1952).
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SOME JESUIT CONTRIBUTIONS TO ASTRONOMY

HENRY M. BROCK, S.J.

To an ordinary person the title of this paper may seem a little

incongruous. For the mention of our Society conjures up for him

the memories of our Saints, our great missionaries, theologians,
preachers and teachers who in its early years helped to stem the tide

of the so-called Reformation in Europe and who since then have done

so much to spread the Kingdom of Christ throughout the world.

If someone should ask what have clerics to do with a science like

astronomy, we might perhaps cite the statement of Fr. Koch in his

Jestiiten Lcxikon: "Astronomy, the oldest science, the daughter of

religion, has always been a favorite of the Catholic Church.” In
ancient times it determined the calendar days for planting and for

celebrating religious festivals, etc. As far back as the year 32} A.D.,
the Council of Nicea concerned itself with the positions and phases
of the moon in determining our Easter Cycle. The great work of

Copernicus (and. 1 543) expounding the heliocentric theory was dedi-
cated to Paul 111. In 1 5 52, Gregory XIII promulgated the reformed
calendar bearing his name which we now follow. In modern times the

Holy See has for many years maintained its own observatory. Pius XI
once declared to a group of astronomers: "The science that you profess
is the noblest and most beautiful that exists.” He showed his practical
interest by moving the Vatican Observatory from Rome to Caste!
Gandolfo and equipping it with the most modern instruments. Only
last September Pius XII welcomed the members of the International
Union of Astronomers at his Observatory, met them individually and

gave them a masterly address (A.AS., Oct. 16, 19 52: Cath. Mind,
Jan. 1953).

It is not surprising then that there has been a traditional interest

and devotion to science, and especially to astronomy, in the Society
which may go back to the days of St. Ignatius. Among the Saints he
is known for his love of the starry heavens. We remember his saying:
Quam sordet mihi tellus dum coelum aspicio.” For a Jesuit astron-

omy is not merely one of the many human sciences. He sees in it a

distinctly apologetic value manifesting as it does the power of the
human mind and the omnipotence and infinite intelligence of God.
Fie knows, too, how our observatories in mission lands have gained
prestige for the Church and the missionaries, as well as good will and
often favors from civil rulers. We propose to make a brief survey of
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the Jesuit observatories and of some of the achievements of our Fathers

in the science of the Heavens.

OBSERVATORIES.

It is rather surprising to note the number of observatories estab-
lished in both the old and new Society. Probably the first in the old

Society and one of the larger ones was the one in Pekin, founded by
the Emperor of China in 1668 and placed in the charge of our

Fathers. This was about the time that the National Observatories at

Greenwich and Paris were established. The Vienna National Observ-

atory founded in 174 5 was also conducted by the Jesuits. We also read

of smaller institutions usually attached to a College in Marseilles,
Lisbon, Vilna, Prague, Milan, Florence, Rome, Parma etc. Obviously
we would not expect any in the countries where the new religion had

gained the ascendency. It is not likely that any of these were re-

covered after the Restoration. However as the Society grew in

numbers and began again the work of education, we meet a number

of more familiar names: Stonyhurst in England, Kalosca in Hungary,
Tortosa in Spain, Valkenburg in Holland, Louvain in Belgium, Jersey
(one of the Channel Islands), Ksara in Syria, Zi-Ka-Wei in China,
Manila, Riverview in Australia, Tananarivo in Madagascar etc. In

South America there are two small observatories attached to Scholas-

ticates, one near Rio de Janiero, the other near Buenos Aires. In the

United States we have Georgetown, Crieghton, Santa Clara, Wood-

stock, Weston and Holy Cross. Most of these are rather small and

intended chiefly for instruction. Tortosa and Zi-Ka-Wei have sections

devoted to Seismology and Terrestrial Magnetism. Manila also had

Meteorology and Seismology. The Vatican Observatory belongs to

the Holy See but it has a Jesuit Staff, the new Director being Fr.

Daniel O’Connell; formerly of Riverview. The present state of some

of these observatories is significant. Kalosca has been lost. The Jersey
community has gone back to France. Valkenburg was taken over by
the Nazis. Manila was completely destroyed in the war, but anew

beginning has been made at Baguio. Zi-Ka-Wei is now in the hands of

the Chinese Communists. Stonyhurst has been closed indefinitely
because of the lack of men and resources.

MOON:

We are naturally more interested in the astronomical achieve-

ments of our Fathers than in the instrumental equipment employed,
though this is also worthy of note. We may consider now some of the

fields in which they have labored. We may begin with our nearest

neighbor in space. Galileo was the first to view the moon with a

telescope. While Hevel of Danzig was the first to attempt a lunar

map, our present map and its nomenclature are due mostly to Fr.

Riccioli (and. 1671), who took up astronomy after teaching Philosophy
and Theology for twenty years. FFe was aided by Fr. Grimaldi
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(and. 1663), the discoverer of Diffraction in Optics. Fr. Grimaldi
collaborated with Fr. Riccioli in the publication of the latter’s great

work: Almagestum Novum and supplied the lunar map in Vol. I,

They named many of the principal craters after eminent philosophers
and men of science. If we examine the surface of the moon and check
the places observed on a lunar map, we may be surprised to find

two adjacent craters near the eastern limb bearing the names "Riccioli”
and "Grimaldi.” We may ask how they got there. Two astronomers,

Littrow and Madler declared in no friendly spirit that Fr. Riccioli was

responsible for this. Fr. Koch seems to admit it as an example of

"Gelehrteneitelkeit” or pedantic vanity which did no harm. Certainly

today no one would deny this honor to these two men in view of their

achievements in physics and astronomy. Among other Jesuit names

on the moon-map we may mention Frs. Clavius, Hell, Triesnecker
Secchi, deVico. Riccioli also studied the lunar libration. Modern

lunar research has centered chiefly on the occultation of stars by the

moon. Excellent work of this kind has been done at Georgetown and

Weston, some of it in response to requests for data to check the new

Brown lunar tables.

SUN:

Solar research has always been favored by the Jesuit astronomers

The pioneer in this important field was Fr. Christopher Scheinei

(and. 165 0). He constructed his own telescope and also conceived the
idea of projecting the sun’s image on a screen in order to study its

surface. He was an independent discoverer of sunspots. Though
Galileo claimed priority on this point, Scheiner was the first to follow

up his discovery by continuous observations over many years. He

noted especially the faculae and the motion of the spots and deter-

mined the period of the rotation of the sun. In the 19th Century we

meet among others the names of Angelo Secchi (and. 1 878) at Rome,

Fenyi at Kalosca, and Stephen Perry (and. 18 89) at Stony hurst. They
observed the spots and faculae. Secchi’s book, Le Soleil was a standard

work for many years. It includes also the best spectrum maps avail-

able at the time. At Tortosa the sun is photographed regularly. Ihe

magnetic station at Stonyhurst, in charge of Fr. Perry, contributed
much to establishing the relationship between the sunspot frequency
and magnetic storms.

SOLAR ECLIPSES:

A total eclipse of the sun is a striking, and in any given place, a

rather rare phenomenon and we are not surprised to learn that our

astronomers do not hesitate to travel long distances with their equip-
ment to observe one. They may be following an old tradition for we

are told that 81. Charles Spinola was one of those who observed the

eclipse of Nov. 8, 1692 in Japan. The important eclipse of 1860 was

observed in Spam by Fr. Secchi and his results proved conclusively
that the prominences are solar in origin and that they are found ail
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the way around the sun. He and de la Rue, an English astronomer,

at a nearby station, used photography for the first time successfully
at an eclipse. Fr. Perry had the distinction of having been placed in

charge of four eclipse expeditions by the British Government, a naval
vessel being placed at his disposal each time. Thus his travels took

him to Spain in 1870, to the West Indies in 1 886, to Russia in 1887,
and to the Palut Islands off South America in 1 8 89. While at the last

place, he contracted a fever and died at sea far from his brethren five

clays after the eclipse. Mitchell in his book Eclipses of the Sun says
of him:

The eclipse of Dec. 22, 18 89 is memorable for the death of Father

Perry a few days after the eclipse, a martyr to the cause of science.

This brave man, though greatly weakened, took part in the eclipse
work and having found as soon as totality passed that everything
had turned out well, he called for three hearty British cheers which

unfortunately he himself could not lead.

We may add that Fr. Perry was also a pioneer in photographing the

spectra of sunspots.

During the past twenty years Georgetown has become well

known for its successful eclipse expeditions. At Freyburg, Maine on

Aug. 31, 1932 the Jesuit group under Fr. Paul A. McNally, with only
modest resources, obtained excellent photographs of the corona and

prominences. One of the former is reproduced on p. 299 of Baker’s

Astronomy (3th Ed. 19 5 0). Their success led to invitations from

the National Geographic Society and afterwards from the U. S.

Armed Forces to participate in expeditions made to Russia in 1936, to

Patos, Brazil in 1938, to Canton Island, So. Pacific in 1940, to

Bocaiuva, Brazil in 1947, to Wuchang, China in 1948 and to Khartoum

in Africa in 1952. The last three expeditions were under the direc-

tion of the present Director, Father Francis J. Heyden. It may be of

interest to note that the reports of the partial eclipse of Jan. 24,

1925, observed by a group here at Weston and by Fr. Edward Phillips
at Woodstock, were published in Popular Astronomy the following
April. Interesting photographs were obtained here.

PLANETS:

For a long time observations of the transits of the planet Venus

across the sun’s disc at two widely separated stations were about the

best means of determining the solar parallax, from which the distance

of the earth to the sun is obtained. This does not occur often. Fr.

Maximilian Hell (and. 1792) by invitation of the King of Denmark

observed the transit in 1769 in Norway. Fr. Perry was sent out to

observe the transit of 1874 at Kerguelen in the Indian Ocean and that

of 1 882 in Madagascar. As far more precise methods are now avail-

able it is doubtful if any Jesuit expedition will be sent to observe the

next transit of Venus in 2004.
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COMETS:

Among comet seekers the name of Fr. Francesco de Vico (and.
1848) is conspicuous.

Under him the Observatory of the Roman

College acquired a European reputation. His greatest achievement was

the discovery of eight comets, one of which is named after him. for

this he received the prize of the French Academy and six gold medals

from the King of Denmark. One of the latter is now at Georgetown,
He came to the University in 1848 on account of political disturbances
in Rome and was appointed Director of the Observatory. He went

to England shortly afterwards to purchase equipment and died of

typhus in Liverpool. The most recent of the comets discovered b\ a

Jesuit is Comet Timmers, named for the Brother Mechanic of the

Vatican Observatory, Bro. Matthew Timmers, who discovered this

object on Feb. 2, 194 5 while examining photographic plates taken at

Castel Gandolfo. For his discovery, Brother Timmers received the

Donahue Comet Medal of the Astronomical Society of the Pacific.

STARS:

Like their colleagues, Jesuit astronomers have carried out routine

stellar observations. Thus, for example, the 37 Volumes of the

Epbemerides Astronomicae published at the Vienna Observatory under
the direction of Fr. Maximilian Hell give evidence of this kind of

work. In this immense field, Fr. Secchi again merits special attention
as one of the founders of stellar spectroscopy. When the principles of

spectrum analysis had been enunciated and tested by Bunsen and

Kirchoff about the middle of the 19th century, Sechi and the English
astronomer Huggins were the first to realize practically their im-

portance in opening up entirely new fields of research in the study of
the composition and nature of the sun and stars. Huggins studied
the spectra of relatively few stars in some detail, while Secchi on the

other hand undertook a more necessary and timely task involving
much skill and labor, viz.: a spectroscopic survey of the heavens. From
1 863 to 1 867 he examined the spectra of some 4000 stars by visual
observation. A study of his results revealed to him the fact that they
could be grouped into four classes, a discovery of great importance,
The latter served a useful purpose for many years until superseded by
the more detailed Draper Classification.

In our day the study of variable stars has become important and
in this field Fr. John G. Hagen (and. 193 0) gained eminence. Coming
to America in 1 880 he taught mathematics at the House of Philosophy
of the Buffalo Mission at Prairie du Chien. Here he took up astronomy
and began the study of variable stars. He became the Director of
the Georgetown Observatory in 188 8 and added much to its reputa-
tion. He made many improvements, installing among other things the

present 12 refractor. While there he published his Synopsis do
Hbberen Mathematik (3 Vol.). He was an assiduous observer of the
then known variables which were comparatively few in number. He
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also published a large number of beautifully engraved charts to aid
other astronomers. 81. Pius X appointed him Director of the Vatican
Observatory in 1906. Here he published his Die Veranderlichen Sterne
(2 Vol.) with Fr. J. Stein who later became his successor. Fr. W.
Miller of the Vatican Observatory has published numerous papers on

variable stars. His latest work on the "Vatican Variables” contains
many suggestions to observers in this field regarding techniques and
the control of data. Fi. F. Heyden of Georgetown is a member of
the I.A.U. Commission on Variable Stars. His researches on the colors
of the Cepheid Variables demonstrated the value of this method of
determining the effects of interstellar reddening at great distances
from the sun. Fr. O’Connell when at Riverview and Fr. Depperman
at Manila have also done excellent work on Variables.

THE CALENDAR:

Fr. Christopher Clavius (and. 1612), the "Euclid of the 16th
Century” is best known for having worked out the corrections and
reform of the old calendar which had been in use since the days of

Julius Caesar. It was with his advice that Gregory XIII, as had

already been stated, promulgated the new calendar in 1 5 82. He

wrote in its defense, but on account of its papal origin non-Catholic

countries were slow in adopting it. Thus England, including the
American colonies, waited 170 years and most of the Orthodox coun-

tries until after the first World War.

TIME AND LONGITUDE:

One of the early useful applications of radio was the broadcasting
of time. On account of its increasing importance this was done usually
only by Government institutions as for example, the U.S. Naval

Observatory and the U.S. Bureau of Standards. So it is interesting
to note that this public service in the Far East was performed for

many years before the last war at Manila and Zi-Ka-Wei. The clocks
used were checked regularly by the stars.

During October and November of 1926 an International Longi-
tude Operation was carried out with the cooperation of astronomers

throughout the world. Its purpose was to determine the difference in

longitude of a number of observatories in order to test the per-

manency of their relative positions and thus to explore certain

possibilities as to the movements of the earth’s crust and also to enable

various observatories to check on their longitudes. Three key stations

with positions accurately known were chosen in approximately the

same latitude about 8 hours apart in longitude. They were charged
with sending out time signals at stated intervals. One of these as

Zi-Ka-Wei where the work was carried out with success under Fr.

Paul Lejay. The other two were San Diego, California and Algiers.
On this occasion Fr. Phillips at Georgetown and Fr. Depperman at

Manila redetermined the longitudes of their observatories.
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CHRONOLOGY AND BABYLONIAN ASTRONOMY:

In the course of extensive excavations at Babylon during the

19th century thousands of tablets were found with cuneiform in-

scriptions. Many of these came to the British Museum. Oriental

scholars were able to decipher many of them, but the astronomical

records remained a mystery. This was solved by Fr. Joseph Epping

(and. 1884), an astronomer, and Fr. N. Strassmaier (and. 1920), an As-

syriologist, working together—an ideal combination. After much

labor the key was found and the various symbols for the planets were

identified and and the tables were interpreted. Thus the remarkable

astronomical knowledge of the Babylonians was made known to the

world. The Encyclopedia Britannica (Vol. 11, p. 580) says

The decipherment and interpretation by the learned Jesuit Fathers

Epping and Strassmaier of a number of clay tablets preserved in

the British Museum, has supplied detailed knowledge of the methods

practiced in Mesopotamia in the 2nd Century B.C.

Father F. X. Kugler (and. 1925 ) continued their work with brilliant

success. He established some important dates. Thus the discovery of

the cuneiform table of the movements of Venus opened the way for

the solution of the vexing question of the date of Hammurabi. As

a result we may say with great probability that his reign falls between

172 8 and 1686 B.C. Both Epping and Kugler published learned

works in their field.

INVENTIONS:

Astronomers are not usually inventors. Their instruments and

accessories are usually designed and constructed by experts in other

fields. A few Jesuit inventors may however be mentioned. The

principle of the telescope was discovered in Holland and Newton

constructed the first reflecting telescope. Galileo made several refract-

ing telescopes with a concave lens eyepiece. Fr. Scheiner however was

the first to design and construct a refractor along modern lines after

Kepler pointed out the advantage of a convex eyepiece lens. It had
chromatic and also, no doubt, spherical aberration but he got good
results with it. He also invented the pantograph. Clavius discovered
the method of subdividing the smallest division of a scale. Vernier

used it in the familiar attachment to measuring instruments which has

his name. Fr. R. Boscovich (and. 1787) invented the ring micrometer.

Among the Jesuit "firsts” should be mentioned the development by
Fr. Secchi of anew type of spectroscope using a direct vision prism.
Fr. G. Fargis (and. 1916) constructed at Georgetown his photochrono-
graph to record star transits on a photographic plate. It did not come

into use at the time but the method is now used with improvements
at the U.S. Naval Observatory in checking the clocks that give us

our time.

Fr. W. Rigge (and. 1927) of Creighton, author of a book on the
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Geographical Construction of Eclipses and Occultat ions designed and
constructed a remarkable machine for drawing complex curves by a

combination of several periodic motions. It is described in his book
Harmonic Curves.

When star transits are observed a correction must be applied to
the observed time on account of the instrumental errors. This is equal
to the sum of three products. The process is rather tedious. Fr. E.
Phillips (and. 1951), formei Director of the Georgetown Observatory,
designed and constructed what he called a "Transit Reduction Com-

puting Machine” by means of which the correction can be obtained
mechanically without calculation. The astronomers of the U.S. Naval
Observatory were much impressed by it.

As is clear, this survey makes no claim to be complete. Time only
permits mention of the contributions of astronomy in aiding the labors
of the missionaries of the old Society in China. This is well described
in the works of Ricci, Verbiest and Schall. The Jesuit ambassadors of
Christ to China were faced with a mighty problem: how to penetrate
the huge isolated country that was China with its traditional hatred
of all things foreign. These men realized that no direct frontal attack
would be possible. They entered as scholars, bringing with them books
and instruments from Europe and thus aroused the attention and
interest of the Chinese astronomers. The latter, marvelling at the

proficiency of these men from the West in astronomical learning, saw

to it that word reached the Emperor. He, in his turn, asked them
for new instruments of European design. Fr. Verbiest planned an

observatory and designed and constructed certain instruments which
remain to this day. It was in this way that the Jesuit scientists of the
17th century gained favor for their fellow missionaries to preach the

good-news of Christ in the Kingdom of China. Certain reports went

to Rome criticizing the methods of these missionary scholars. How-

ever they were consoled by receiving a letter from the Pontiff,
Innocent XI, commending them for using the profane sciences in

working for the salvation of the Chinese people.



Chemistry

THE DISPROPORTIONATION OF PRIMARY ALIPHATIC
AMINES IN THE PRESENCE OF
RANEY NICKEL CATALYST 1

JOSEPH A. MARTUS, S.J.

The catalytic hydrogenation of nitriles in the presence of certain

finely divided metals, such as nickel or platinum, has generall)
resulted not only in the desired yield of primary amine, but also in

an unwelcome yield of secondary amine. In this work the dispropor-
tionation of primary amines was studied with the purpose of discover-

ing those conditions under which the largest yields of secondary
amines can be produced.

The disproportionation of the following amines was investigated:
aniline in the presence of benzylamine, m-nitro-aniline in a solution

of dipentene, aniline in a solution of tetralin, p-toluidine in a solu
tion of dipentene, benzylamine without a solvent, benzylamine in a

solution of xylene, cyclohexylamine without a solvent, and the follow-

ing amines, also without a solvent: decylamine, nonylamine, octyl-
amine, n-amylamine, n-butylamine.

The disproportionation of a primary aliphatic amine requires the

presence of an active catalyst, and in this work Raney nickel produced
the best results. The ratio of amine to Raney nickel catalyst on a

gram basis was roughly two to one. In one portion of the work

activated alumina was employed as a catalyst, but it did not prove as

successful as Raney nickel.

A variety of solvents was at first employed, to lessen the forma
tion of tars. It was found however, during the course of the investiga-
tion that no solvent need be used, if the reaction were conducted in

an atmosphere of hydrogen gas. For the sake of comparison one

experiment was conducted wherein octylamine underwent dispropor-
tionation in the presence of oxygen gas. The yield of di-octylamine
was considerably reduced. The use of nitrogen gas was not as helpful
as hydrogen gas.

Some of the reactions were performed at room temperature with-
out any disproportionation taking place. These reactions were per
formed solely in the presence of activated alumina. The remaining
reactions were conducted at an elevated temperature, generally in the

range of 190°-210°C. At this temperature large yields of secondary

Abstract of a dissertation submitted to the Faculty of Clark University, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Chemistry.
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amines were obtained. For the most part the reactions were allowed
to run from four to five hours.

Ihe results of the investigation show that the disproportionation
of primary aliphatic amines proceeds only with great difficulty. There

is required an active catalyst, such as Raney nickel, and a high tem-

perature.
Under the conditions investigated the aryl amines gave no

detectable yield of secondary amine. Cyclohexylamine, under the

given conditions, likewise gave an extremely small yield of secondary
amine. Benzylamine, in the absence of a solvent and in an atmosphere
of hydrogen gas, gave a 51 % yield of di-benzylamine. When the

hydrogen was passed over the surface of the liquid, benzylamine gave
a 62% yield of secondary amine. Decylamine in the presence of hy-
drogen gas and heated for 1.2 5 hours gave a 32% yield of didecyl-
amine. Nonylamine in the presence of hydrogen gas and heated for

2 hours gave a 24% yield of di-nonylamine. Octylamine, heated for
four hours in the presence of hydrogen gas, gave a 76% yield of di-

octylamine. n-Butylamine, heated in the presence of hydrogen gas
in an autoclave, gave a 50% yield of di-n-butylamine. Octylamine,
heated in the presence of oxygen gas, gave a 48% yield of di-octyl-
amine.

Reviews and Abstracts

General Education In Science, edited by I. Bernard Cohen and Fletcher

G. Watson. Harvard University Press, xviii -)- 217 pp. 1952.

"Why should we teach any science at all to the nonscientists?”

is the blunt query in an opening address at the 19 50 Workshop Con-

cerning Science in General Education. The responses of the other

fourteen guiding contributors may be gleaned from their addresses as

presented in this volume. The question is a burning one—and the

response no less so, since the why and wherefore are nothing but a

statement of objectives which in turn determine the means to be

employed, i.e., content of course and mode of presentation.
This query is followed by an analysis of the objectives of general

education itself, with a terse summary of it as "the improvement of

citizen understanding and clearer thinking.” A second query presses

the attack, "Is there anything unique in science that will contribute

to better citizen understanding and clearer thinking?” The technique
of solving problems is the substance of one reply. Another is the

insight that science is a force not only for social change but also for

social stability, with the consequent importance of an historical per-
spective, of realizing the interaction of science with religion, literature,
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and all other human activity. Reference is made to readings which

probe these to-and-fro influences in history. Examples are cited—

Ben Franklin and Asa Gray, in contrast to Sam Johnson and Louis

Agass iz as evidencing this integral view when faced with decisions in

matters of great complexity.
Asa response to the same question, a remedy for the same ailment,

the case history method of teaching science is discussed by those who

have been attempting it. Shortcomings and obstacles are brought to

light. The average teacher’s dearth of an historical background is

recognized, and specific books are suggested to those desirous of

acquiring this perspective. Teachers’ conferences have proven helpful.
Another difficulty is broached: how to give the student true practise
in clear thinking? i.e., in problems the solutions to which are un-

known to him beforehand. Colgate attempts an answer; the results of

a student questionnaire are cited as evidence of its efficacy. Then

another thorn: how evaluate student progress? Essay-type tests are

declared indispensable, although one contributor presents a sample
set of objective questions designed to achieve this goal.

Two speakers consider the relationship of the philosophy of

science to the teaching of science, discussing the importance of a

scientist’s environment, —of the time-space setting in which he works,
with its tremendous influence on his "objectively-determined” hy-
potheses and theories. The role of applications in teaching science is

presented with insight and appreciation. Some problems in the teach-

ing of biology are diagnosed by another pair of contributors, who

iterate the importance of natural history and of laboratory work.

The two concluding papers present techniques of evaluation, as applied
to the case history method of teaching.

This book will interest most science teachers—fresh, relevant

ideas are always welcome, and this workshop provides more than a

trickle. Asa workshop too, it is a bit jarring. Here are men from

Harvard, Colgate, and Yale, from Brookhaven and the Rockefeller

Institute for Medical Research taking time out to reflect together on

the needs of our day, on their objectives in teaching science, and on

the means of achieving them. We tend to take'our objectives and

means,—the courses, as set in concrete. This is due in part to our

inheritance of centuries of achievement. Yet if it is due at all to the

effectiveness of what we have, perhaps we could illuminate those

who are still groping. That too is part of our purpose. Moreover,
those centuries of Jesuit experience and achievement in the classroom

were stamped by what Gilbert Highet, no mean teacher himself,
terms adaptation.” Ultimate objectives remain fixed, but the multi-
tude of intermediate objectives and means,—are they by nature un-

varying? The book is worth reading.
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