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Obituary

REV. GEORGE A. O’DONNELL, S.J.

(Nov. 22, 1899—Jan. 1, 1952)

Father O’Donnell S.J. died on the morning of January 1, 1952

in the fifty-third year of his life. While he was making his annual

retreat at the Boston College summer house in Cohasset, Mass., he

caught cold and came down with pneumonia. I'his was early in Sep-
tember 1951. He was taken to St. Elizabeth’s Hospital in Brighton
where he remained until the time of his death. May his soul rest in

eternal peace.

Of late years Father O’Donnell did not enjoy good health. He had

a heart condition which forced him to relinquish gradually his teach-

ing schedule, but he attended to the duties of his office as Dean of

the Boston College Graduate School until the time he left for his

last annual retreat. During the flu epidemic in 1918, he was afflicted

with the dreadful illness and never seemed to regain his strength
sufficiently. He had pneumonia several times, and these periods of

illness taxed his heart to its capacity. During recent years he had

to be careful not to exert himself because of the poor condition of his

heart.

He was born in South Boston on November 22, 1899. He attended

the local elementary school and after his graduation from Boston

Latin High School he attended Boston College for one year. At the

end of his freshman year, he answered the whisperings of grace in

his soul and entered the Jesuit novitiate at St. Andrew-on-the-Hudson
in the summer of 1917. Here he made his classical and philosophical
studies. During this period he showed outstanding ability in Mathe-

matics, so for his regency he was assigned to teach Freshman and

Sophomore Mathematics at Georgetown University in Washington,
D. C. In later years, he referred to those years at Georgetown as

the happiest two years of his life. Shortly before his death he requested
Superiors to allow him to leave the hospital in order to recuperate
at his beloved Georgetown. After his regency he went to Weston

College to make his theological studies. He was in one of the first
classes to be ordained at Weston. The date of his ordination to the

Sacred Priesthood was June 22, 1929. From 193 1-35 he did doctoral
studies at St. Louis University which conferred upon him the Ph.D.

degree in Seismology. In his doctoral dissertation he presented anew

mathematical treatment of seismic waves, entitled "A New Vector
Theory of Wave Motion.”

Instead of reporting to the Seismological Observatory at Weston

120
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over which he was nominal head for several years, he was asked by
Superiors to head the Graduate School of Boston College. At that

time the school was revising its curriculum. He threw all his energies
into this important task. The present-day high standards of the

school are a credit to his executive ability. Besides his office as

Dean, he taught Mathematics in the Graduate School and also was

chairman of that department. From 1935 to 1952 he built up a

mathematical library that has nearly 5 000 volumes which include all

the important treatises on every branch of Mathematics, several serial

publications, and the complete sets of twenty-four journals, American,

English and foreign. The library is a memorial to his vast knowledge
of the literature as well as to his deep and intense interest in his

fascinating field of Mathematics.

Because of so many duties other than those of teaching, he never

had the time for publication. He directed many graduate students

in the writing of their M.A. thesis. He held membership in the

American Mathematical Society, the London Mathematical Society,
the American Association of Jesuit Scientists, the Phi Rho Alpha
Physics Research Academy, the Institute of Mathematics Teachers of

New England, and the American Association for the Advancement

of Science. He was a former president of the American Association of

Jesuit Scientists, and was a member of the Entertainment Committee

of the International Congress of Mathematicians which was held at

Harvard University August 3 0-September 6, 195 0.

As Dean of the Graduate School he belonged to several conferences

and associations pertaining to that office. Fie was a prominent member

of The New England Conference on Graduate Education, an association

of Deans, and of which he was president for the academic year 195 0-

51. He faithfully attended the meetings of the Deans of Graduate

Schools representing Catholic Colleges and Universities throughout
the United States, and of the National Catholic Educational Associa-

tion, College and University Division.

Father O’Donnell, S.J., never spared himself. He threw himself

into his work. He expended himself for others. The large numbers

who attended his wake and funeral Mass attest to the good he did

for others. He never was too busy to be of assistance to others whether

it be a problem in Mathematics, the establishment of a college, or

the securing of a position. Nothing was too big or too small for his

efforts if it was for a good cause. In the early part of August each

year he acted as host to the Knights of Columbus who annually
conduct a three-day convention of boy scouts on the college campus.

He was easy to approach. He always had a bit of pleasantry to mix

with the serious.

During World War II Boston College had a large number of her

students in the Naval Reserve as well as in the other branches of

the service. It was decided to offer the students courses that would

prepare them for their military service. Father O’Donnell, S.J., im-
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mediately started a course in Navigation and from 1942-1944 li.

prepared hundreds of students so well that the grade they received

in Navigation at the Midshipmen’s school was suliiciently high to

excuse them from the final examination. He built up a library in

Navigation that would be a credit to any college. 1 his was charact-r-

--istic of the thorough manner in which he did what he set out to do

This extra duty exhausted him. He never seemed to quite recover

from it. His health continued on the decline until he realized that

teaching was too much of a strain upon his heart. He gave up teach-

ing entirely a year ago.

Father O’Donnell, S.J., was a grand priest, a zealous educator, and

a person with charity to all. May he rest in peace.

Anthony J. Eiardi, S.J.

Biology

CARBOHYDRATES AND LIPIDS

WILLIAM D. SULLIVAN, S.J.

Carbohydrates (so called because they are hydrates of carbon)
make up 5 0 to 60% of the American diet. All living substances

are known to contain carbohydrates in greater or lesser degrees.
Because of their structural complexity, they are difficult to define

and so the following definition is not as accurate as it might be.

Carbohydrates are the hydrates of carbon in which hydrogen and

oxygen are in proportion of 2:1. This is not entirely true, since

there are many chemicals, which, on the basis of this definition and

their own chemical formulas, should come under the classification

of carbohydrates, such as acetic acid (CH-j—COOH), lactic acid

(CH^—CHOH —CHOH), and formaldehyde (CTCO). In these

substances the proportion of hydrogen to oxygen is the same as

that of the carbohydrates, yet they are not carbohydrates. There

are still other substances which are classified as carbohydrates and

which do not have this proportion of 2:1, such as rhamnos (C13H1205).
This much, at least, is fundamental in the structure of carbohydrates,
they are composed of carbon, hydrogen and oxygen and are the

very important sources of energy in all animal and vegetable cells.

They are the all important constituents of the cell walls in plants,
being the supporting skeletons of these walls. It has been shown

by some investigators that 70% of the vegetable is carbohydrate.
Ultimately, the energy of all living organisms comes from the
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sun. In the presence of sunlight, the chloroplasts combine carbon

dioxide and water in such a way that a carbohydrate is manufactured

and free oxygen is liberated. The following equation represents the

process of photosynthesis;

6C02 6H20 > -- 602
Carbon dioxide Water Grape Sugar Oxygen

This means that from the combination of 6 molecules of carbon

dioxide and 6 molecules of water there result grape sugar and

oxygen. Due to the fact that the intermediary reaction is not

thoroughly understood, the above equation is not as accurate as it

may seem. The end products, however, are correctly represented.
There is one theory of the intermediate reaction which says that

the carbon dioxide and water are first decomposed by the energy
absorbed from the sun in the chloroplasts. The atoms constituting
the carbon dioxide and water are then recombined to form formalde-

hyde. Six molecules of formaldehyde immediately combine to form

one molecule of grape sugar. Since formaldehyde is poisonous to the

protoplasm of the plant, the combination of six molecules of this

substance must be immediate and rapid. The energy, which has

been absorbed by the chloroplasts and used to combine carbon dioxide

and water so as to form the carbohydrate, is preserved in the carbo-

hydrate as potential energy. This storing of potential energy is,

perhaps, the most important phase of photosynthesis, since it is this

energy which sustains life in the plant and other living organisms.
The carbohydrates are polyhydroxy aldehydes and polyhydroxy

ketones, or chemicals, which, on hydrolysis, will yield either aldehydes
or ketones or both. Some of the carbohydrate in animal tissue and

plant tissue is tied into the protein molecule since nucleic acid and

the nucleoproteins contain a carbohydrate group as the prosthetic

group; some more of it is free and not bound in with the protein
molecule. Carbohydrates have been found mainly in the plant king-
dom, though many of them have been found in the animal kingdom
as well.

The general division of carbohydrates classes them as sweet and

crystalline compounds called sugars, and as tasteless and noncrystalline
compounds called starches, cellulose and products allied to these

compounds. They have been classified into aldehyde and ketones, the

former being known as aldoses and the latter as ketoses. Finally they
have been classified into the monosaccharides, disaccharides, tri-

saccharides and polysaccharides according to their behavior with

hydrolytic agents. A monosaccharide of three carbon atoms, accord-

ing to this terminology, receives the name aldotriose if the carbohydrate
is an aldehyde of three carbon atoms; or it may be a ketoriose if the

carbohydrate is a keto alcohol of three carbon atoms such as:
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Aldehyde Ketone

Aldotriose Kctotriose

O CH 'OH

II I
C-H C=o

CHOH CHOH

CH.OH CHoOH

The monosaccharides are the simplest of sugars which cannot

be hydrolyzed further. Due to the fact that glycoaldehyde
(CHjOH—CHO) contains no asymmetric carbon atoms and

therefore is not optically active, glyceraldehyde (CH-OH—CHOH

CHO) is recognized as the simplest of the carbohydrates, or as

some of the authors call it, the 'mother substance’.

These monosaccharides, therefore, include the trioses, C ;H, ;O
such as glyceraldehyde, tetroses, CHO, such as erythrose and threose

pentoses, C5H1005, such as ribose, arabinose, xylose and lyxose, hex-

oses, CoHioOc,, and other sugars up to the decoses. Actually the

decoses have been synthesized in the laboratory, but such compounds
have not as yet been found in nature. The more common among
the monosaccharides are the pentoses and the hexoses, containing
5 and 6 carbon atoms respectively.

Among the more common pentoses are arabinose, the result of

hydrolyzing gum arabic, xylose, the result of hydrolyzing straw,

and ribose, a constituent of nucleic acid found in yeast. All of

these carbohydrates are aldoses and may be represented in the

following manner.

Arabinose Xylose Ribose

H H H

c=o c=o c=o

HOCH HCOH HCOH
! I !

HCOH HOCOH HCOH
I I I

HCOH HCOH HCOH

CHoOH CHoOH CHoOH

The pentoses and the hexoses differ in that yeast causes the

fermentation of the former. They usually appear in their more

complex forms called pentosans, which are the anhydrides of the

pentose molecules which have lost water molecules. In the same

way hexose molecules appear as hexosans. To obtain a pentose
from its corresponding pentosan, hydrolysis with acids is used. To

estimate the presence of pentose in any tissue, the tissue may be

treated with concentrated hydrochloric acid yielding a substance
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called furfural. The presence of furfural may then he detected by
holding a piece of paper moistened with aniline acetate in the escap-
ing vapor. A red color is produced on the paper.

The more common hexoses are glucose and fructose. Actually
these two hexoses are the only ones which occur free in nature. All

the other hexoses appear in combination with the disaccharides and

polysaccharides. Some of these other hexoses are talose, galactose,
idose, gulose, altrose and allose.

Glucose is the most important and most widely used hexose. It

is also called dextrose, because it is dextrorotatory. It is found

in grapes and hence it is also called grape sugar. It is in the juices
of many fruits, in honey and it is in the blood of humans to about

0.1%. In diabetic cases the percentage of glucose in the blood is

much higher, and can be easily detected in the urine. Commercially,
glucose is prepared from the hydrolysis of starch in the presence of

dilute acids and is used as a sweetening agent in syrup, chewing gum
and many other food products, such as candy and jellies. Its formula

may be written as follows:

Glucose

H

c=o

HCOH

HOCH

HCOH

HCOH

CH^OH

There is an aldehyde group at the top of the chain and there

then follow four asymmetrical carbon atoms. According to the Le

Bel-van’t theory there should be sixteen possible stereoisomers of

glucose because of these asymmetrical carbon atoms. Though all

sixteen are known, only four have been found to exist in nature.

Since glucose is an aldehyde, one of the carbon atoms of the com-

pound is combined with hydrogen and oxygen in the aldeh)dc link-

age. For an excellent treatise on the steps which led to the adoption
of this formula confer Wertheim (1947).

Fructose, which is also called levulose or fruit sugar, is a keto-

hexose. Like glucose it is readily oxidized. The oxidation of fructose

and glucose is taken advantage of in the most used tests for sugais,

the Fehling’s test and the Benedict-Fehhng test, wherein cupric

hydroxide is reduced to cuprous hydroxide or cuprous oxide. These

same tests are used for the quantitative determinations of sugar
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content in tissues. It may be obtained by hydrolysis oi cine sutn

or sucrose and has the following formula:

Fructose

CH,OH

I
c=o

HOCH
|

HCOH

HCOH

CH2OH

The disaccharides (C12H22012) hydrolyze to yield two mole

cules of monosaccharides, or they may be said to be a combination

of two molecules of monosaccharides with the loss of one molecule

of water. These two monosaccharides may be the same oi different

Examples of disaccharides are sucrose, maltose and lactose, the

former two being present in the vegetable kingdom and the latter

in the animal kingdom. They are crystalline solids which react

like the simple sugars in solvents.

Sucrose, on hydrolysis, yields glucose and fructose, and is re-

presented by the following formula:

Sucrose

I l
CH 1 (X CH 2OH
I \ I
CHOH x;

! I
CHOH O CHOH

I | O
CHOH CHOH

1 I
CH CH

I I
ch2oh ch

2 oh

Glucose Fructose

Sucrose, along with maltose and lactose, is of tremendous im-

portance physiologically. It is the well-known cane sugar used on

the table, and is a constituent of the sap of many trees, especially
of the sugar maple. It is also called saccharose and sometimes beet

sugar. The structure of sucrose shows it to be composed of two

monosaccharides joined at the number one and two carbons. It

is the sweetest of all sugars and does not reduce Fehling’s solution.

Historically, sucrose is known from the earliest times. In 1746 it
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was called sugar by Maggrof in Berlin. It has become the basis of
the present day sugar industry. The most outstanding property of

sucrose is its capacity to caramel.

When treated with enzymes or with dilute H
l
-S0 4 and then

heated, there is produced molecular units of glucose and fructose
of equal quantities. The direction of optical activity is reversed

in the chemical reactions of sucrose. If hydrolyzed under polarized
light invert products are produced. This means that while sucrose

is dextrorotatory, in hydrolytic reactions of sucrose the equal
amounts of glucose and fructose produce a sum of negative
rotations. For this reason the sugar itself is said to be an invert

sugar and its process of hydrolysis is said to be inversion. Hy-
drolysis, or inversion, may be brought about by invertase, an

enzyme, or by acids and alkalies. Another peculiarity of sucrose

is that in itself it is not fermentable, but its end products on

hydrolysis are fermentable and so one may have fermentation

following hydrolysis. Besides invertase, which is found in some

yeasts, zymase and sucrose, the latter being found in the small

intestine, may also hydrolyze sucrose.

Maltose, on hydrolysis, yields two molecules of glucose. It is

sometimes called malt sugar, because it is found in malt, a sprouted
grain of barley. It is a hydrolytic product of starch produced
by an enzyme found in barley called diastase. It may also be

hydrolyzed by acid and alkalies or by another enzyme, maltase,
which is found in yeasts. Its importance industrially comes from

the fact that yeasts so readily attack it.

There is also good evidence for the formula of milk sugar or

lactose. By juggling the formula a little, the properties of this

sugar can be varied. Lactose is not known to come from the

vegetable kingdom. In mammalian milk there is six to seven

percent lactose, while in cow’s milk there is about four percent.

It can be obtained by allowing milk to evaporate and then separat-

ing the fat from casein which is precipitated by means of rennet.

On hydrolysis glucose and galactose are produced. Its commercial

source is whey, and can be purified by repeated crystallizations.
It can easily be synthesized, having been first synthesized by
Hudson in 1942. Its chemical reactions resemble those of the

hexoses. It acts like a reducing sugar and is very slowly attacked

by yeast.

The trisaccharides (C ls Hßl>Oi C ) yield, on hydrolysis, three mole-

cules of monosaccharides, or they may be defined as the result

of a union of three molecules of monosaccharides with the loss

of two molecules of water. An example of this class of carbo-

hydrates is raffinose, which is found in the cotton seed.

The monosaccharides, the disaccharides and the trisaccharides be-

long to the class of sugars because of their sweet tastes. They are
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soluble in water and alcohol; they crystallize easily and pass through
dialyzing membranes.

The polysaccharides ((CcHioOsjx) yield on hydrolysis more than

three molecules of monosaccharides, or they are the result of a con-

densation of many molecules of monosaccharides with a corresponding
loss of water molecules. Included in this group are the gums, dex

trins, pectins, starch, glycogen and cellulose.

The polyoses form colloidal solutions with water; they do not

crystallize; and they do not pass through dialyzing membranes. Tim

do not reduce Fehling’s solution, though they may be hydrolyzed into

the simple sugars which do reduce Fehling’s solution.

The best known polysaccharide is starch. It is found mainly in

fruits, in grains and in tubers where it forms a reserve food supply
Though insoluble in water, if boiled the cell wall bursts and a

portion of starch is then dissolved. If the starch is boiled long
enough, it is broken down into substances which are simpler in

structure and called dextrins. If hydrolyzed with diastase, the result
is maltose. Some authors say that a progressive hydrolysis of starch

produces maltose at each step of its breakdown. Wertheim pictures
the progressive steps as follows:

Starch (blue with Io)
\

Maltose Amylodextrin (blue with G)
F / \

Glucose Maltose Erythrodextrin (red with I?)
F i/ \

Glucose Maltose Achroodextrin (no color)
F F

Glucose Maltose

F

Glucose

Starch is a product of photosynthesis which appears as two sub-

stances. They may' or may not be two distinct chemical substances
The cortical area of the starch grain is called amylopectin, or alpha
amylase, and it has a branched polymer for its molecular structure.

The central area is called amylase, or beta amylase, which is a linear

polymer. Amylopectin is insoluble in water. In hot water it swells

and shows no coloration with iodine. Amylase is soluble in water

and shows a blue coloration with iodine. The blue color is not a

chemical reaction but rather a physical phenomenon of adsorption.
By continued heating of the amylase this blue color will disappear.
In this linear polymer there are about 200 to 5 00 glucopyramase form-

ing the chain.

The quantity of starch in a given tissue may be determined by
the colormetric method or it may be hydrolyzed completely with
H2SO4 and then the amount of glucose and fructose which is pro-
duced may be estimated.
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Glycogen, or as it is sometimes called, animal starch, is a polymer
composed of many rings of glucose and is the important source of

energy in the animal body. It is found chiefly in the liver (where
it is formed and contributes 3% of its total weight) and in the

muscles where it is reserved as food supply. In an emergency it can

quickly be reverted to glucose. On hydrolysis of glycogen, glucose
is produced. It does not reduce Fehling’s solution. It can and has

been synthesized from proteins and the amino acids.

Another polysaccharide is inulin which can be hydrolyzed to fruc-

tose. It is found in many plants. Its structure is similar to starch

in as much as it is composed of a linear polymer. It does not reduce

Fehling’s solution, and on reacting with iodine a yellow color is

produced. It is said to be found in the Jerusalem artichoke, dahlia,
etc. Though it is similar to starch in structure, it differs in that it

does not become soluble in hot water.

Cellulose is the chief constituent of the walls of cells in plants.
Cotton fiber is said to be almost pure cellulose. On hydrolysis cellulose

produces glucose. It is said to be composed of cellobiose (CioFIooOn),
a disaccharide isomer of maltose. Another substance, lignocellulose,
in all probability, is a combination of cellulose with resins and gums.
Lignins, whose chemical structure is not known, cements the fibers

of cellulose together forming wood, the supporting skeleton of plants.
Pectin, in combination with cellulose, forms pectocellulose, and it

is that substance responsible for the formation of jellies from fruits.
The industrial uses of cellulose are almost innumerable today. Some

of the more common uses are the following. The cellulose found

in cotton forms esters and gels when they are treated with nitrate

and from this is made artificial silk, films, lacquers, plastics and

explosives; when treated with acetate, artificial silk, films and lac-

quers are formed; when treated with viscose, artificial silk and films

are formed. The cellulose found in wood, as decomposition products
when distilled, produce methanol, formaldehyde, acetic acid, acetone,

acetone oils, charcoal, tar, pitch and creosote; when hydrolyzed, al-

cohol, cattle food, acetic acid and furfural are formed; when treated

chemically, sulfite pulps are produced from which writing paper,
tissue paper and wrapping paper are produced.

The gums, pectins, and mucilages are also polysaccharides which

yield pentose and hexose sugars when hydrolyzed. From the gums

are produced xylose, arabinose, and galactose; from the mucilages
there are produced molecules of galactose. Gum arabic is used in

medicinal and pharmaceutical work for the making of tablets and

pills. They are probably carbohydrates combined with acids, and

are used as adhesives as well as to suspend insoluble substances in

liquids. The mucilages are used for constipation treatments be-

cause they are insoluble, tasteless, non-digestible, odorless and swell

when placed in water. Fruits, deficient in pectin, do not have the

power to form jellies. Commercial pectin has been added to such
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fruits and jellies have resulted. Commercially, pectin is derived ;i

most exclusively from applies and lemons.

Intracellular carbohydrates inclusions may be seen in almost every

cell in many different forms and shapes. Sometimes it can be seen

as fine granules, sometimes as irregular flakes, sometimes it is localised

in certain specific parts of the cytoplasm, while at other times it may

be seen to be diffused throughout the cytoplasm.
The role glucose plays in the formation of carbohydrates is a

very important one. Almost all the carbohydrates, higher than th

monosaccharides, yield glucose on hydrolysis. Sucrose yields glucos<
and fructose. Lactose yields glucose and galactose. Starch yields
dextrins, which, in turn, yield maltose, and finally hydrolyze to

glucose. Cellulose yields cellobiose and finally glucose.

LIPIDS

The lipids are esters of fatty acids plus a trihydric alcohol, glycer
01. They are a general non-polar, hydrophobic group of substances

found in the living system, relatively insoluble in water and soluble

in organic solvents, such as chloroform, benzene and petroleum due

to the long aliphatic hydrocarbon chains or benzene rings. The

aliphatic chains in some of the lipids may be attached to a polar
group at one end and hence may become hydrophilic.

According to Bleuret (1943) they are a group of naturally occur-

ing substances consisting of fatty acids (true fats), substances

chemically related to the true fats and substances related to the true

fats by reason of their common solubilities.

The lipids are classified into the simple, the compound, the steroids,
carotenoids (according to some of the authors) and allied lipoidal
substances. The simple lipids are esters of fatty acids plus alcohol.

Among these are the triglycerides which are the triesters of fatt)
acids and glycerol. The triglycerides have been divided into the
fats and oils, although there is no essential difference between these
two. The fats are solid at ordinary temperatures, i.e. 20 C, while
the oils are liquid at these temperatures. Some examples of these two

are human fat and lard, and olive oil, castor oil and the fish oils. The

waxes are also simple lipids, and are esters of fatty acid plus alcohol
other than glycerol. Beeswax is an example of this type of lipid.

The compound lipids are those which, on hydrolysis, yield not only
the acids and alcohol but other substances as well. Among these are

the phospholipids, containing phosphoric acid and nitrogen (lecithin,
cephalin and spingomyehn), the glycohpids, containing glycogen,
and the sulfohpids, containing sulfuric acid, and the cercbrosides,
containing nitrogenous carbohydrates, such as phenosin, kerosin
and nervone. These latter are the principle constituent of myelin
in the nerve fiber.

The steroids are a complex aliphatic ring system of molecules. Sex
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and adrenal glands (the adrenal cortical hormones), bile acids and
vitamin D belong to this class. They are hydrogenated phenanthrene
derivatives of which cholesterol and ergosterol are the most common.

Cholesterol is the fundamental constituent of wool fat or lanolin and

is often found linked to one of the fatty acids in an ester linkage.
The carotenoids are the colored (red or orange) pigments found

in the cell. They are insoluble in water and soluble in organic solvents.

Examples of these lipids are the carotenes which are found in carrots

and grass, vitamin A and xanthophyll found in leaves.

The general formula for the simple lipids is as follows:

O

CHo—O—C—R (1)

O

ch2—o—c—r (2)

o

ch2-o-c-r(3)

In the formula above R represents the fatty acid. When R is

the same throughout, the lipid is a simple glyceride; if R is different,
it is a mixed glyceride.

The hydrolysis of a simple lipid may be represented by the follow-

ing equation:

O
||

CHo— O—C—R

O O CHo-OH

CHo—O—C—R + 3NaOH » 3RC—ONa + CH —OH

O CH—OH

I H
CHo O C R (Sodium (Glycerol)

salt of

fatty acid.

Soluble in

water)



o
II

CH 2—O—C—R

O O CH. OH

I II II I
CH 2—O—C—R + 3CaOH > 3RC —OCa +CH OH

| |

| O CHo-OH

(Calcium (Glycerol)
salt of

fatty acid.

Insol. in

water)

Asa result of the breakdown of these fatty acids, glycerol may

be seen to be a trihydroxyl compound. This compound joined to

three fatty acid molecules produces a simple lipid or a triestcr, som

times known as a triglyceride.
Aside from the many physical methods, the usual analysis of a fat

depends on the determination of a certain chemical constant. The

first analysis depends on the saponification number. This represents
the number of milligrams of KOH required to saponify one gram of

fat. Roughly speaking, this number varies inversely with the mole-

cular weight of the fat. In this analysis the fats and oils are hy-
drolyzed with the alkali; the fatty acids separate from the glycerol
and form a metallic salt. The process is called saponification and

the resulting product is a soap. Saponification takes place in the

small intestine due to the presence of an enzyme, lipase, which is

manufactured in the pancreas.

The second fat analysis depends on the Reichert-Meissl Number.
In this analysis the number of cubic centimeters of 0.1 N alkali

required to neutralize the soluble volatile fatty acids from five

grams of fat is called the Reichert-Meissl number. Volatile fatty
acids represent the acids which volatilize on steam distillation. They
are approximately confined to the series ranging from butyric to

lauric acid, and are divided into two groups, those soluble in water

and those insoluble in water.

132

Chemical Constants Determined by Fat Analysis

Fat Sapon. No. I No. R.M. No. Acetyl No.

Butter 220 25-50 26-32 2-8.6
Olive Oil 185-196 79-88 0.6 10.6

Calanus 132 185 —

Blue Whale 190 135 —
—
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Another method of fat analysis is called the acetyl number. It
consists in the number of milligrams of KOH required to neutral-
ize the acetic acid resulting from the hydrolysis of one gram of
the acetylated fat. A fatty acid containing an hydroxyl (and
this reaction requires the presence of hydroxyl groups) will react

with an acetic anhydride to form the acetylated compound.
The iodine number is a fourth way to determine fat analysis

and it consists in the number of grams of iodine absorbed by 100

grams of fat. This number depends on the extent of unsaturation

in the molecule of fat. To accelerate the absorption process,

halogenating agents, such as iodine monobromide or iodine mono-

chloride, are added. These agents produce diiodo compounds which

allow the process to take place more rapidly.
Unsaturated fatty acids can be saturated by the addition of

hydrogen and this process is called hydrogenation. This process
can be accelerated by using a catalyst such as nickel. By this

means, not only unsaturated fatty acids, but also unsaturated fats

can be made to add hydrogen. By heating oil to a very high
temperature in the presence of nickel, it is possible to reduce and

hydrogenate the double bond of the acid and so, in cooling, the

oil becomes a solid. If hydrogenation is allowed to go to comple-
tion a solid and brittle product would result.

Rancidity is a property peculiar to fats and it is easily detected

by the unpleasant odor and taste of fat which has been allowed

to stand. It is due primarily to chemical changes of the un-

saturated fatty acids present. The chemical change involves

the oxygen of the air, which attacks the double bond, and the

fat is then catalyzed by moisture, heat and light. Peroxides are

probably first formed and these are then broken down to alde-

hydes. Ketones are also formed from the action of microorganisms.
Fats in the human body are hydrolyzed into fatty acids and glycerol.

These are then absorbed through the lining of the small intestine.

After absorption they are again synthesized into fat and slowly pass
into the lymphatic system, from which system they finally pass into

the blood stream. Some of this fat is then deposited in the adipose
tissue and wherever else it is needed and some more of it is oxidized

to COo in the cells.

The three phospholipids are lecithin, spingomyelin and cephalin. The

former two have choline as a base and the latter has cholamine

as a base. Choline has the same strength as NaOFT It requires the

same amount of acid to bring choline to neutrality as it does to bring
NaOH to neutrality. Choline has a stimulating effect on the fats.

If it is not present in an organism then the organism finds itself un-

able to make use of the fats. It accumulates in the liver and its activity

is still a mystery and can be known only through its effect on the diet

of the individual cell. Choline is derived from acetylcholine, from the
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parasynthetic nerve endings. Acetylcholine is the causative factor in

nerve transitions.

Lecithin is a combination of fatty acid, glycerol, phosphoric acid

and choline and plays a very important role in fat metabolism. An in-

crease in fat metabolism indicates an increase in phospholipid content

Lecithin is derived from eggs and has been found in the brain tissue

as well. All the phospholipids are insoluble in acetone. Cobra venom

will attack lecithin in the following manner:

C—R C

C—R -j- cobra venom > C—R -j- R

C—P—Choline C— P -Choline

Cobra venom, on attacking lecithin, knocks one of the fatty acids

(R) from the chain and the products which result are lyslecithin and

fatty acid. Lyslecithin attacks the red blood cells causing haemolysis.
In other words, the individual overcome by cobra venom suffocates

to death, because the red blood cells will not pick up oxygen, no matter

how much oxygen may be present.

Cephalin, similar to lecithin in that it contains the fatty acids, gly-
cerol and phosphoric acid, differs from lecithin in as much as it con-

tains as a base cholamine, or aminoethyl alcohol, whose formula is

as follows:

CHo—R Cephalin with

CH —R

O Cholamine base
II

CHo—O—P—OCH 2—CLL—NLL
I
OH

R represents the fatty acids, either saturated or unsaturated. The

N compound is the difference between cephalin and lecithin. Cephalin
is connected with blood clotting, and unlike lecithin it is insoluble
in alcohol.

Sphingomyelin is a complex compound, composed of phosphoric
acid, choline and sphingosine, another nitrogenous compound, and lig-
noceric acid. It differs from both lecithin and cephalin in that it is
insoluble in ether. It is also insoluble in acetone and cold alcohol.

The sterols are monohydroxy alcohols found in all living cells and

may occur in two forms, either as free sterols or as combinations of

higher fatty acids, such as cholesterol esters. Chemically the sterols

are hydrogenated phenanthrene derivatives such as are found among



135

the bile acids and sex hormones. Vitamin D is related to the sterols
through ergosterol, C27 Cholesterol is by far the best known
sterol.

Cholesterol is found in all animal and plant cells except in the one
cell animal Colpidium campylum (Sullivan, 1948). It is especially
present in the nervous tissue, and it is from the nervous tissue and
animal brain tissue that it is prepared. It does not saponify. There
are two tests which are widely used for the determination of the
presence of cholesterol. One of these is the Leibermann-Burshard
test; acetic anhydride with concentrated sulfuric acid yields a green
colored solution. In the Salkowski test, chloroform with concentrated
sulfuric acid yields a bluish-red to purple colored solution. The

intensity of the colors will vary with the amount of cholesterol

present. Both tests, therefore, are quantitative as well as qualitative.
In reacting with digitonum, cholesterol will precipitate yielding
cholesterol digitonin. By weighing out the cholesterol digitonin, a

direct quantitative test can be made. Cholesterol is synthesized by
most animals (Wilber and Seaman, 1948). In plants the sterols are

called phytosterols, and such sterols are not used by the animal body.
The precise function of the sterols in the vegetable kingdom is un-

known, though it is probably a water binding agent.

In general the function of the lipid depends greatly on its location

and its disposition in the organism. For example the simple lipids and
the glycerides serve as stores of energy or they may serve as protection
against cold or other harmful agents as is certainly the case with regard
to the lipids and fats in the whale. The bile acids are protein de-

naturants and serve as aids to digestion. In particular, cholesterol, be-

cause of its close association with vitamin D, is a stimulating agent
for epidermis and helps in the growth of hair. The sex hormones

regulate the metabolic processes as well as the reproductive processes.
Myelin of the nervous tissue and brain tissue has as a chief constituent

the phospholipids, and lecithin functions in the methylation process

going on within the liver.

In recent years protein, carbohydrate and fat inclusions have been

found in various types of cells. Adipose tissue has been the specific
object of many investigations since this tissue is the store house of

reserved fat for many animals and in this tissue a tremendous amount

of fat can be accumulated. In the adrenal cortex cells various mix-

tures of sterols, phospholipids and fatty acids have been discovered.

In the adsorption of fats by the individual cells, the fatty acid and

glycerol, which must be absorbed separately through the cell mem-

brane, undergo saponification previous to absorption. Lipase, an enzyme
within the cell, reunites the fatty acid and glycerol after absorption.

The carotenoids are a pigmentary inclusion of some cells. These

pigmentary inclusions may be of two types, endogenous pigments
(products of cellular metabolism) and exogenous pigments (ac-



136

cumulated by the cells from the outside). Ihe carotenoids .tie

exogenous.

Carotene is a carotenoid found in the hepatic cells and is eventually
transformed into vitamin A. Lutein is the pigment giving coloi to

the yolk of eggs. Xanthophyll is the pigment found in leavi-s and

giving to the leaves their peculiar pigmentation. Because these pig
ments readily go into solution with fats, they spread then color

throughout the fatty substance, giving the entire fatty compound
a colored effect.

The lipochromes have been called by some authors carotenoid.

However other authors more accurately classify them as endogenous
pigmentary inclusions, distinguishing them from the exogenous pig-
ments of which the carotenoids are the most important. About aii

that is known of the lipochromes is that they are lipid derivatives.

They manifest lipid characteristics and can be seen as yellow or

light brown granules in the cell.

Lipophanerosis, or as it is sometimes called 'fatty degeneration’,
is the upsetting of the equilibrum between fats and proteins by a

particular toxic condition in the cell. Within the cell, fat is dis-

covered to be in the form of an emulsion with protein. In some

cases the fats are the dispersed phase and the proteins are the disper-
sion phase. In other instances the proteins are the dispersed phase and

fats are the dispersion phase. Whenever this apparent colloidal con-

dition of fats and proteins within the cell is altered so as to destroy
the emulsoid condition, fatty degeneration or lipophanerosis takes

place.
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EVALUATION OF EVIDENCE FOR SEXUALITY IN BACTERIA

ALWYN HARRY, S.J.

The occurrence of fusion and sexuality in bacteria has been
claimed often, and as often disputed. It is a much debated question,
and the conception that bacteria have no sexual mode of re-

production is widely entertained. Morphological evidence of the

existence of sexes as inferred from the apparent fusion of cells, the

formation of protusions and of bodies resembling zygospores, is
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very unreliable because of various optical limitations of the micro-

scope, even the electron microscope. However, there are numerous

claims that bacteria reproduce sexually like higher organisms. Accord-

mg to Dienes (1946), the question of whether bacteria multiply
exclusively by binary fission, or whether, in addition, they have more

complex reproductive processes, has more than academic interest.
Binary fission makes possible the segregation of hereditary combina-
tions and rearrangements of them. It is difficult, Dienes concludes,
to believe that in bacteria no mechanism exists by which new combina-
tions of hereditary characteristics may be produced which are ad-

vantageous in a given situation.

The study of inheritance in bacteria was for the most part con-

fined to the investigation of mutational changes in the course of
asexual reproduction. With the exception of experiments on pneumo-
coccus type transformations there have been few studies on the
direct hereditary interaction of one bacterial type with another.
Griffiths (1928), and Avery, McLeod and McCarthy (1944) worked

on the transformation of pneumococcal types. Their studies revealed

that, under special experimental conditions, a product isolated from

a serologically specific, smooth, pneumococcus culture will convert

cells of a non-specific rough culture to the smooth type characteristic

of the source of the transforming principle.
Genetical studies have produced some evidence for a sexual process

in bacteria. Early workers in this field were Lohnis (1921), Almquist
(1924), and Mellon ( 1925 ), who studied the phenomenon of parag-

glutination in the colontyphoid dysentery group. (Paragglutination
refers to the development of new types which react with antisera
for each of two distinct strains when these are grown together in

a mixed culture.) Luria (1947), however, maintains that the material

presented by these investigators in support of the hypothesis of

sexuality in bacteria cannot be used as genetic evidence because of

the lack of information on the exchange of recombination of dis-

crete hereditary characters in the course of the alleged sexual fusion.

Sherman and Wing (1937) described experiments designed to

detect recombinations of fermentative characters in mixed cultures

of various Escherichia coli and Aerobacter aerogenes strains. Although
new combinations of biochemical characters were found, similar types

were found in an equal extent in pure cultures so that these authors

could not infer the occurrence of sexual fusion.

Gowen and Lincoln (1942) performed similar experiments with

strains of Phytomonas stewartii, using cultures differing in morpho-
logical and pigment characteristics. As in Sherman and Wing’s
studies, these authors were unable to differentiate the new types

they found in their mixed cultures from types which arose spon-

taneously in single cultures.

Klienberger-Nobel (1946) described automictic, sexual processes
in bacteria preceding the formation of the endospore. The micro-
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organisms Clostridium welchii and C. septicum were used in these

investigations. Changes in nuclear structure in these bacteria wen

studied by means of the hydrochloric acid-Gicmsa method which

produces brilliantly stained specimens. The investigators observed
and took photomicrographs of the nuclear changes in the organism:
She concluded that the two main features in spore formation of bacteria

appear to be (1) a fusion of the dumbbell bodies into an axial chroma-

tin rod (autogamy), and (2) a reduction partition which is reminiscent

of, though not corresponding to, the more complicated phenomenon
of meiosis in the higher organisms. Knaysi (195 0) does not consider

Kleinberger-Nobel’s work to be conclusive.

The findings of Lederberg and Tatum (1947) present the strongest

supporting evidence for the occurrence in a bacterium of a process
of gene recombination, from which the existence of a sexual stage
may be inferred. According to Luria (1947), these studies, though
still in the preliminary stage, appear to be among the most funda

mental advances in the whole history of bacteriological science.

Lederberg and Tatum used, for their experiments, mutants of a

single strain of Escherichia coli. These strains, characterized by
specific growth factor requirements, were obtained after treatment

with x-rays, ultraviolet rays and mustard gas. By successive treat

ments, multiple mutant strains with several genetically and bio-

chemically independent nutritional requirements were produced. When

samples of mutant strains were plated into minimal medium with

samples of other mutant strains, colonies developed, which possessed
the characteristics of the original E. coli strain from which all the
mutants had been derived. These results strongly suggest that there
had occurred fusion followed by exchange of genetic determinants

(genes), similar to crossing-over, followed by separation of the
fused cells. These all represent a true form of sexuality in a very

simple bacterium. It must be emphasized, however, that no other
bacterial strain has yet been found to show behavior similar to the
E. coli strain used by Lederberg and Tatum.

These findings of Lederberg and Tatum have been confirmed by
more recent investigators including Haas, Wyss and Stone ( 1948),
and Cavalli and Heslot (1949), using the Kl 2 strain of E. coli also.

The work of Dienes (1947) also offers evidence in favor of sex-

uality in bacteria. This investigator observed the development of
viable large bodies in the zone of contact of 2 strains of Proteus.

The reproduction of these large bodies at the contact of the 2 strains

presents at least a superficial similarity to the conjugation and pro-
duction of sexual spores in the zone of contact of fungus cultures.

CONCLUSIONS

1- The occurrence of fusion and sexuality in bacteria is a disputed
one.
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2. Morphological evidence for the existence of sexuality in bacteria
is often unreliable.

3. The most powerful evidence of a sexual process in bacteria
has been obtained from genetical studies.

4. The essence of sexuality is the exchange of hereditary properties
between different strains—there are observations which indicate that
such a process occurs in bacteria by fusion of cells.
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Mathematics

NECESSARY AND SUFFICIENT CONDITIONS

JOHN GREEN, S.J.

In theorems for the convergence of series there occur three groups
of conditions for convergence. The first group of theorems contain

Necessary and Sufficient Conditions; the second group contain Neces-

sary Conditions and the third group contain Sufficient Conditions for

the convergence of series.

The statement that a theorem contains a Necessary and Sufficient

Condition means that if the conclusion of the theorem exists then

the condition is satisfied and conversely if the condition is satisfied

then the conclusion exists. A Necessary and Sufficient Condition for

a theorem means that the theorem is true and also the converse of

the theorem is true.

A Necessary and Sufficient Condition for a limit would be:

1) If the limit exists, then the condition is satisfied.
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2) If the condition is satisfied, then the limit exists.

Examples of Theorems with Necessary and Sufficient Conditions ,ire:

1) The Necessary and Sufficient Condition for the existence of

a limiting value of a sequence of numbers Xi, x_, x is

that corresponding to any given positive number £, however

small, it shall be possible to find a number n such that

| xn + p— xn | < e for all positive integral values of P

2) In order that the infinite product (1 —|— a i) (1 —a2 ) .. . .
may be absolutely convergent,- it is necessary and sufficient

that the series ai -f- ao a,s -j- . .
should be absolutely con-

vergent.

3) A Necessary and Sufficient Condition for the convergence of

a bounded sequence is that the upper limit L be equal to the

lower limit 1.

Proof: If L = 1 = A then for any e > 0 there is at most a

finite number of terms of 1 xn r such that xn > L -f- e =

A-)- e and also at most a finite number of xn
for

which xn < 1— e A— e.

Therefore A—e< x„ < A -j- £if n por x
n

A

<C e if n p which is the statement that lim xn
= A.

n —/

Conversely, if lim x„ = A then for any e > 0 and for
n—» 00 /

n P, |xn—A|<eor A— e < x
n
< A-)- f. There-

fore x
n

< A -j- £ for an infinite number of x
u

and the

inequality xn < A—e is true for at most a finite number

of the xn .
Therefore 1= A.

But j x„ A : < e also states that x„ > A e is true

for an infinite number of x„ and that there are at most a

finite number of x„ for which x
n

> A -f- e. Consequently
L = A. Since 1 A and L = A then 1 = L.

Theorems which contain Necessary and Sufficient Conditions for

convergence are of so general a nature that in particular series the

convergence can only rarely be determined by their application.
Therefore more practical tests for convergence are found in the
theorems containing either a Necessary or a Sufficient Condition for

convergence.

A Necessary Condition for convergence means that if this series
is convergent then the condition is true. For example, if the con-

dition na„ —> 0 is given for the convergence of a series, it is only a

Necessary, not a Sufficient Condition for convergence. For if na„ does
not tend to zero, then the series in question is certainly divergent,
while na

n
—> 0 does not necessarily imply anything as to the possible

convergence of the series.
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Examples of Theorems with a Necessary Condition-
J * 00

1) A Necessary Condition for the convergence of a series X u„

is L un
= 0. This condition is not sufficient for conver-

n—» co /
gence, as is shown by the fact that in the divergent harmonic

,11 1 1
series 1 1 b • • • H L un

0.

2 3 n n ->co/ n

However the hypergeometric series 1 -| 1 |_ . .
#

2” 3 P ’
’

n”

converges for all values of p > 1 and diverges for all values
of p 1.

2) Raabe’s convergence test fails if the numbers an
in the ex-

an + i an

pression =1 though constantly > 1 have the

a
n

n

value 1 for a lower limit. In that case, writing an
== 1 -j- /3n

the condition lim n/3n
= is a necessary condition for the

oo

convergence of X an-
In fact if n fin were bounded, then

n = 1

an + 1 1 00

would equal 1 —and X a
n

would be

an n n
2

n = 1

divergent by Gauss’s test.

A Sufficient Condition for convergence means that if this con-

dition is satisfied then the series is convergent. For example, for

a given condition a series has absolute convergence but this condition

is not necessary for absolute convergence since absolutely convergent

series can be found which do not satisfy this condition.

Examples of Theorems with a Sufficient Condition:

oo

1) For a series XI to converge, it is sufficient that the

n = 1

CO

series of moduli X Ifn | should converge. This condition

n = 1

1

is not necessary for writing f
n

= in fi fo + fa U
n

1 1 1

-I- a convergent series, it is seen that 1 -\
' ‘

2 3 4

1

4- converges, although the series of moduli 1 +~
’

2
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1 1

-| (- .
is known to be a divergent series.

3 4

oc

2) The series T] an
is absolutely convergent if from a certain

n— 1

term onward a relation of the form [ a„ j < c q“
holds where c is a positive number less than 1 . 1 his test

is usually expressed in one of the following forms: the series

30

an converges absolutely if from a certain term on-

n = 1
an + 1

ward, a relation of the form \ | <C q (2a) holds,
a n

where q is again a positive number less than 1 and independ-
ent of n; or if from a certain term onward a relation of the

n

form \/ an < q (2b) holds, where qis a positive

number less than 1. In particular the conditions of these

4- 1

tests are satisfied if a relation of the form lim

n—» 30 a
n

n

=k < 1 (3a) or lim \/ |an |=k < 1 (3b) is true,

n —»

The four tests derived from the original criterion a„ < c q" are

not equivalent to one another or to the original, that is, they cannot

be derived from one another in both directions. More exactly if (3a)
is fulfilled, then (2a) is fulfilled; if (3b) then (2b); if (3a) then

(3b); if (2a) then (2b); and if any of the four is satisiied, then so

is (1). None of these statements can be reversed. These tests furnish
sufficient conditions for the absolute convergence of a series; that

is, when they are satisfied then the series converges absolutely. They
are definitely not necessary conditions however because absolutely
convergent series can be found which do not satisfy these conditions.

In the previous example for the Necessary and Sufficient Conditions

for a limit, the Necessary Condition would be: if the limit exists

then the condition is satisfied; the Sufficient Condition would be: ii

the condition is satisfied then the limit exists.

In theorems containing either a Necessary or a Sufficient Condition

the converse of the theorem is not always true, as it is in the case

of theorems containing Necessary and Sufficient Conditions
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RELATIONS BETWEEN TRIGONOMETRIC AND
EXPONENTIAL FUNCTIONS

ROBERT O. BRENNAN, S.J.

The complex exponential function is more convenient than the

trigonometric functions as a means of representing harmonic motion
and wave phenomena and is much more common in the literature.
The physics teacher would like to make his students familiar with

the properties of e' J

as soon as possible. The principal task is to prove
the relation

f" = cosv -j- /sinv. (1)
I or this proof one needs, as a minimum, a knowledge of differentiation
(or at least some knowledge of certain limits) and in addition one

other bit of knowledge or skill. In terms of three different starting
points, we shall present here three approaches, recommending the
third but offering the other two as possible exercises or auxiliary
discussions.

I. The extra bit of knowledge required for the first approach
concerns the existence and convergence of power series. Usually the
student will not meet power series until he is finishing the integral
calculus. Hence sometimes it might be necessary for him to make an

act of faith pro tem. Once he has met McLaurin’s series it is only
necessary to compare the series developments of e‘ x

,
sin.v and cosv

to verify Eq. 1.

11. The second approach requires a little more maturity and might
be useful as a way of helping the development of maturity. It has
the advantage that it can be motivated in terms of de Moivre’s
theorem. The additional knowledge required here is that it is possible
to replace one definition of a mathematical function by another

definition in terms of a suitable set of properties. To illustrate this

notion, we consider first the trigonometric functions.

The student usually thinks of the sine and cosine as certain geo-

metric relations. Actually, however, there are only a few theorems

concerning angles (not triangles) in trigonometry which actually re-

quire geometric proofs. If we start with these theorems and, instead

of proving them, make them serve as definitions, all the remaining
properties of angles follow exactly as they did before. These theorems

which are necessary and sufficient propositions to characterize the

sine and cosine are, first, the identity

cos
2
v -f- sin 2

v =1; (2)

secondly, the addition formulas

cos(v -j- y) = cosvcos y sinvsiny (3)

sin(v -(- y) cosvsiny -)- sinvcosy; (4)

and, thirdly, in order to discuss the derivative, either the limit
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lim sinv/v = 1

x = 0

or, more conveniently, the derivative itself

d/dx(cosy) = —sin.v. (5)

Once these properties (Eq. 2-5) are known, all the other properties
of sin.v and cosy may be derived from them. Hence they may be taken

as a definition of the sine and cosine.

The reader may find it interesting to show from Eq. 2-5 that the

functions

e
ix

+ <?*'
(6]

2 2 i

are the cosy and sinY respectively. If he substitutes an arbitrary base

a for e, he will see the importance of the derivative in characterizing
the sine and cosine.

Once the expressions (6) are identified as the cosine and sine, Eq
I follows easily by addition. We wish to apply the same method

directly to the exponential function since it has a certain heuristic

value in view of de Moivre’s theorem.

In considering the trigonometric functions, we took the geometric
properties as more familiar to the student and indicated that Eq. 2-5

could be derived from the geometry. The exponential function is not

met first in terms of geometry, but as the inverse of the logarithm.
However, when we remember that the student is introduced to

the logarithm as a way of manipulating exponents, we realize that

the exponential is in fact a particular base raised to a power. It has

then two properties. The first is the multiplication law which

characterizes it as a power:

e
x

c
y
= H*+v> (7)

or, symbolically, so as to emphasize the property in the abstract:

/(*)/(7) = /(x+y) . (8)
We might as well notice here the extension of this property:

/(*)"* = f( mx ) (9)
which follows from Eq. 8 by setting y = x and using mathematical

induction.

It will help to clarify what is to follow if we remark here also that

Eq. 7 or 8 is not sufficient to determine uniquely the argument of

a function which is known to be an exponential. For if Eq. 7

is true for a given v and y, it is true also for px, py and p (x -f- y) .

The second property of the exponential not only serves to specify
its base but also removes the ambiguity of the argument just men-

tioned. The choice of e as a base reduces the general formula for

powers
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d/dx (a ) alna du/dx to the very simple form
d/dx(eu

) =e
u du/dx or (10)

again to isolate the property:

df{u)/dx = f(u) du/dx. (11)
du/dx in Eq. 11 will determine u, i.e., will distinguish e

px from
e to remove the ambiguity of the argument.

The properties indicated in Eq. 8 and 11 are sufficient to identify
an unknown function as an exponential. We may use them to prove
Eq. 1.

The student may have met de Moivre’s theorem in algebra where
it is often proposed as an exercise in mathematical induction. The
theorem reads:

(cos.v -f- isinx)
m

cos mx + isinmx (12)
If we define g(x) = cos.v -f- isinx (13)
Then Eq. 12 states that

g(x )
m

= g( mx )-
This is the special case of Eq. 8 noted in Eq. 9 and suggests that
we try to verify that g(x) has the property of Eq. 8. This is very
simple. We need only show that

(cos.v + isinx) (cosy -f- isiny) == cos(x-f-y) -f- isin(x-j-y)
which follows very easily by expanding the left side and making
use of Eq. 3.

We are now very close to identifying g (x) . If we can show that

it has the property of Eq. 11, the job is done. This is also easy for

d/dx g(x) = —sinv -f~ icosx = /’[cos.v -j- z'sin.v] = ig(x).
The factor / here shows us that /(//) of Eq. 11 is /( ix) or g(v) = e' x.

111. The third approach is the shortest and best, and has been

saved until now as a reward for the patient reader. I am indebted

to Fr. Sohon for the method which he mentioned once in conversa-

tion.

We define

y cos.v -|- isinx, (14)
and calculate

dy/dx = /(cos.v -f- isinx) = iy.

Now, in addition to differentiation, we need only a little skill,

enough to solve this differential equation. There is no trouble in

acquiring it just for this occasion. We write

dy/y = idx

and by integration have

lny = ix -(- C.

We now have the relation y = Aeix and need only determine A.



This again is easy since from the definition of 3 (1 q. Hi, we haw

y = 1 for x = 0. Hence A must be 1.

If one has reached the point in differential equations where hi

needs this relation and it is unknown to the students, rlus third

method has the advantage of brevity and homogeneity with di-

rest of the course.

THE SQUARING OF NUMBERS MEN TAM Y

JOSEPH A. PERSICH, S.J.

1. Squaring a Number Ending in "5”

N.B. The last two numbers of the square are always 2 5 .
To find the number before the ”2 5”, multiply the number before

the ”5” by one more than itself. Place the ”2 5” after the result of

this multiplication.
e.g. 35 2

= 1225 since 3(4) = 12

e.g. 75
2

= 5625 since 7(8) == 56

2. Squaring Numbers Between 2 5 and 75

N.B. You must know by memory the squares of all rhe numbers

between 1 and 25.

METHOD: (Difference between the number and 25) add two zeros

mentally
-j- (Difference between the number and 5 0).

e.g. 472
= (47 25) 100 -f (50 47) 2

= 2200 + 9 = 2209

e.g. 62 2
= (62 25) 100 — j— (62 50)

2
= 3700 -f- 144 3844

3. Squaring a Number Between 75 and 125

a. Between 76 and 99:

[Number (Difference between the number and 100)] add tw<>

zeros mentally
-f- (Difference between the number and 100) 2

e.g. 96 2
= (96 —4) 100 4 42

= 9216

e.g. 88 2
= (88 12) 100 -f 12

2
= 7744

b. Between 101 and 125:

[Number -j- (Difference between the number and 100)] add two

zeros mentally
-|- (Difference between the number and 100) 2

e.g. 108
2
= ( 108 -f 8) 100 -f 8 2

= 11664

e.g. 122 2
= (122 -j- 22) 100 -f 22 s

= 14884

4. Squaring a Number Between 126 and 1000

1. Express the number in terms of the nearest multiple of 50.

e.g. 141 2
= (15 0—- 9) 2

e.g. 267
2
= (250 + 17) 2

146
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2. Represent the difference between the number and the nearest

multiple of 5 0 by ”x”.
3. Notice these results:

(50 -j- x)
2

= (5 2 -f x) 100-fx2

(100 -fx) 2
= ( 10

2 + 2x) 100 + x 2
(15 0 -j- x) 2

= (15
2 -j- 3x) 100 + x 2

(350 x) 2
= (3 5 2 7x) 100 -j- x 2

(600 x)
2

= (60 2 —12 x) 100 +x 2

(850 —x)
2
= (8 5

2 —17 x) 100 + x 2
4. Notice in all these cases that our square can be represented

by these 2 formulas:

(Nearest multiple of 50-j-x) 2
= (a 2 -f- bx) 100 -)- x 2

(Nearest multiple of 50 x)2
= (a

2 bx) 100 4-x2

nearest multiple of 5 0 a

where a = and b =

10 5

e.g. 21 3 2
= (200 -f 13) 2

= [20 2 + 4(13)] 100 + 13 2
=

+ 169 = 45369

e.g. (441) 2
= (450 9) 2

= [45 2 9(9)] 100 +92
=

194400 -f 81 = 194481

A THEOREM IN GEOMETRY

JOSEPH P. MERRICK, S.J.

As proofs of this theorem are rarely seen, the following may be of

interest.



Theorem: If the bisectors of two angles of a triangle are equal, then

the triangle is isosceles.

Given: In the triangle ABC angle 1 = angle 1, angle 2 angle 2,

t = ti

To Prove: b = c where c= h -j- and

Proof: Since t is the bisector of angle C then b : a = h : and

Hence (b —(— a) :a = (h -f and) :d = c:d

So (b -|- a) : c = a : and = b : h

ac be
Thus and = ; h =

b —|—3. b —a

Butt 2 = ab hd (Wentworth, p. 179)
abc 2 ab(a + b) 2 abc 2

Hence t 2 = ab =

(a + b) 2 (a + b) 2

ab (a + b -(- c) (a +b— c) 4abs(s c)

(a + b) 2 (a + b) 2

where s is the semiperimeter.
4acs (s— b)

Likewise t
2
i
=

(a + c)
2

b(s —c) c(s —b)
Since t = ti by hypothesis, =

(a + b) 2 (a + c) 2

Hence a
2

s(b —c) sbe (b —c) + 2abc (b —c) +
bc(b + c) (b —c) = 0

Thus b c = 0 and b = c is a solution.

Since a
3 + a

2b + a
2

c + 3abc + b 2
c + be 2

= 0 has no solu-

tions applicable to the theorem, then b = c is the only possible
solution.

N.B. Two other proofs, one geometric the other trigonometric,
are a bit more complicated. Even college Freshmen will find

this theorem intriguing.
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SOME APPLICATIONS OF THE FERMI-DIRAC STATISTICS
TO ATOMIC AND MOLECULAR PROBLEMS 1

J. V. BONET, S.J.
St. Louis University

L. H. Thomas 2 and, independently, E. Fermi' 1 developed a semi-
classical method of calculating approximately the charge distribution
of isolated atoms; it is known as the Fermi-Thomas method and has
been extended to diatomic molecules by F. Hund 4 and to the atoms

in a metal by J. C. Slater. 0

The fundamental assumption of this method is to consider the

cloud of electrons surrounding the nucleus or nuclei, as a gas, or en-

semble of particles which obey Fermi-Dirac statistics. These electrons

are regarded as being non-relativistic particles. Exchange effects are

ignored. It is further assumed that the absolute temperature of the

ensemble equals zero; this, according to Fermi-Dirac statistics, means

that the electron gas occupies the region of phase space of lowest

possible energy, and at this region is saturated with two electrons in

each cell of phase space of volume h3 (h being Planck’s constant)
but the outside is empty. In other words, the number of electrons

per unit volume in phase space is equal to 2/h 3
at all points correspond-

ing to an energy less than a certain maximum E 0 (which depends
on how many electrons there are in the atom) but zero at points
corresponding to an energy greater than E

O
.

Three main steps, based on the foregoing assumptions, lead to the

so called Fermi-Thomas equation. First one obtains a relationship
between the electron density in ordinary space and the electrostatic

potential at any point within the atomic or molecular field,

Pe = [2m(E O + eV)] 3/2 (1)
3h3

V takes into account only the potential due to the nucleus alone and the

Coulomb interaction between the electrons themselves. (E 0 -j- eV)
is the maximum kinetic energy of any one electron at any point in

the atomic or molecular field. The electron density is seen to be con-

sidered as effectively continuous throughout the field. It is important

to notice that the field is assumed to be sensibly the same at a point
whether empty or occupied by an electron; such an assumption is

plausible only in the interior of a heavy atom.
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In the second step Poisson’s equation is used in order to obtain

a differential equation in V,

V 2V=47re pe (2)

whose solution, in the case of an isolated atom, is subject to the bound

ary condition lim rV = Ze

r —*o

Finally, by introducing a convenient transformation of variables,

and making use of the fact that the atomic field can be taken to

be spherically symmetrical, equation (2) can be put in the form

known as the Fermi-Thomas equation

d L’<f>
. =</> 33 2/ (3)

andx 2

For an isolated atom, boundary condition </> (x) = 1 should he

x —» o

imposed on its solutions.

Equation (3) has been solved numerically by several authors.'

Many different solutions are found but <f> approached the x-axis

asymptotically for only one of them; this is the solution for the

neutral, isolated atom. When the appropriate solutions of (3) are

substituted in expression (1), one obtains the charge distribution of

the atom.

The Fermi-Thomas method has been used with success to calculate

the number of electrons in the completed atomic shells, 1 the Ryd-
berg correction of the s-terms

8 and other spectroscopic quantities.
Hund 4 adapted the Fermi-Thomas method to isolated diatomic,

homonuclear molecules. This type of molecule can be pictured as

a cloud of electrons in the field of two identical nuclei which are

supposed to be motionless; the charge in each nucleus equals cZ; the

distance between them can be put, for convenience, equal to 2a.

The significant difference between this type of molecules and the

isolated atom is that the field of the former is not spherically sym-

metrical throughout, but it is assumed to be so in the near vicinity
of each nucleus (where it differs slightly from that of each single
atom) and also at large distances from both nuclei (where it differs

slightly from that of an atom with twice the nuclear charge of one

of the component atoms of the molecule).
One can start with the same electron density expression as in the

atomic case [equation (1)] and then introduce anew dependent
variable u = a eZV. Next, using Poisson’s equation, the following
differential equation is u is obtained

V“u = y u
3/ 2

(y is a constant factor) (4)

upon whose solutions the following boundary conditions should be

imposed: uri —> 1 as ri —» o and uro —* 1 as ro -> o, where ri,

r-2 are distances from nucleus 1 and 2 respectively.
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Hund 4 found that, to a first approximation a satisfactory solution

for the whole molecular field can be written in terms of the solutions
for the individual component atoms, as follows

1 1

u=— <P [y 2/H ri f (r x ) ]-| </> [y 2/3
r2 f (r 2) ] (5)

ri r 2

where f is a suitable interpolation function.

Once the charge density of a molecule is found, one can use it

to study molecular properties and calculate molecular constants.

For instance, the author attempted, with fair success, to calculate

the diamagnetic term in the susceptibility of N2 using a combination

of the Fermi-Thomas method as adapted to molecules by Hund

and the Slater atomic orbital method.

By merely imposing anew boundary condition on the solutions

of equation (3) (besides the one already mentioned in connection

with the isolated atom), the Fermi-Thomas model can be used to

investigate the behavior of atoms in a metal. Each nucleus in the

metal is assumed to be enclosed in a spherical cell which contains

just enough electrons to neutralize the nuclear charge. The potential
inside cell arises from the charges within it only, and it is assumed

to be spherically symmetrical. At the boundary of the cell the electric

field must vanish, since the net charge contained within must be

zero; this is the new boundary condition and can be formulated as

d(f> cb
follows = —, at the surface of the atom. According to this model,

dx x

one is allowed to speak of atomic radius and volume.

Of the many possible solutions of equation (3), those which satisfy

dcf) cf)
boundary conditions (f> (x) = 1 and— = are the solutions for

x—» o dx x

the atoms in a metal. With the help of these solutions one can arrive

at interesting results. For instance, once the potential and charge
density are known one can readily obtain the potential, kinetic and

total energy of each individual atom. Then it is found that the

virial theorem holds for individual atoms, as it should if our funda-

mental assumption of regarding the atom as a statistical ensemble

is correct. Finally, from the virial theorem one can pass on to establish

an equation of state for individual atoms. These ideas can be found

clearly explained in an article by R. P. Feynman, N. Metropolis and

E. Teller. 11

The procedure followed by E. Fermi and L. H. Thomas to establish

their solutions of the many-electron atom has been appropriately
called semiclassical. A more rigorous approach, that is, one based

explicitly on the fundamental postulates of quantum mechanics is

desirable; this approach was adopted by P. A. M. Dirac.
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From the antisymmetric linear combination of products of one

electron eigenfunctions which, according to quantum mechanic

describes the whole many-electron system, Dirac derives, by purely
quantum mechanical methods, an expression for the total election

density of the system,

87r I 2e L’m T 4e 4
m

J

p e
= \ b b2m ( E

<’ + eV») ! ( 6 )
'333 L h

L
h-

This expression takes into account the exchange effects which were

ignored in the simple Fermi- Thomas theory. Then by using again
Poisson’s equation, one obtains a differential equation which can

be simplified to a form which bears a remarkable resemblance to the

Fermi-Thomas equation,

dV
= X(e + l/d/2/xV2)3 ( 7 )

dx“

The term e = (3/3 27r2 ) V3 Z~ 2 /3
represents the exchange phenomena;

it is clear that for e o Dirac’s equation reduces exactly to the

Fermi-Thomas equation. Thus Dirac provides a theoretical justification
to the Fermi-Thomas method besides generalizing it so as to include

exchange effects. An unpleasant feature of the Fermi-l homas-Dirac

equation should be pointed out: because of the correction term e,

the equation requires a different set of solutions for each value of

Z, while the Fermi-Thomas equation requires only one set of solutions

for all values of Z.

The Fermi-Thomas-Dirac equation has not been adapted to

diatomic molecules as yet. An attempt to do that is in progress in

St. Louis University.
Both the Fermi-Thomas and the Fermi-Thomas-Dirac methods

have been employed to study crystals, metals at low and high tem-

peratures, matter under very high pressures as found in the stars,

and other topics of interest. However, the numerical results thus

obtained are, in most cases, valuable only as first approximations.
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THE THEORY OF FINITE STRAIN OF AN ELASTIC BODY

PATRICK A. HEELAN, S.J.

The subject of Finite Elastic Strain is one in which there is a grow-

ing interest today. The fall of 19 5 1 marks, as it were, the coming
of age of this offspring of Applied Mathematics, its debut as an

independent and legitimate science. The material hitherto dispersed
through the journals and discussed only in esoteric conclaves has

been collected by, perhaps the most outstanding investigator in this

field, Professor Francis Murnaghan, and has been published, with

the results of his own research in a book entitled "Finite Deforma-

tions of an Elastic Solid”, by John Wiley and Sons, Inc. It is there-

fore appropriate at this time, to review the problem and the literature

dealing with it and to try to form some idea of the length, breadth,

height and implications of such a problem.
First of all, I want to say a few words on the meaning of strain

and stress, which are technical terms in this science of Elasticity.
Strain is the measure of the deformation of a body, i.e. the measure

of its change of shape or size when subjected to certain forces. Strain

is always associated in an elastic body with an internal system of

forces, called stresses which are induced in the body by the de-

formation. They are a sort of sympathetic response of the whole body
to the strain imposed upon it. In general, they grow or fade as the

strain grows or fades and their nature provides physical criteria for

distinguishing a solid from a liquid and a liquid from a gas.

In a perfectly elastic body, the stress components are algebraic func-

tions of the strain components. I say, in a perfectly elastic body, be-

cause this simple relationship is only true when we agree to neglect
such effects as elastic hysteresis, elastic afterworking, internal friction,

and thermoelastic effects.

Now, as it happens, neither the components of strain nor, in
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general, the components of stress are linear in the derivatives of the

coordinates. Consequently, the differential equations of elastic motion

are non-linear. Here the crux of the problem lies. For up to recent

years, little was known about the properties and solutions of non-

linear differential equations. Some of the fruits of modern research

on relatively simple non-linear differential equations arc sufficiently
surprising and unexpected to make us pause before the problem pro-

vided by the complete partial differential equations of elasticity.
Here indeed, is a major obstacle.

However, when the exact solution was unattainable, approximate
methods were devised. The approximation used consisted in omitting
all the non-linear terms in the differential equations and retaining only
those linear in the derivatives of the coordinates. The set of equations
so obtained are the basis of the Classical or Infinitesimal Theory of

Elasticity. In vector notation, they are,

p 02u/ot* = V • T (after Sohon)

where 4> is the stress tensor, which assuming a linear relationship
between stress and strain (Hooke’s Law) and that the medium is

isotropic, becomes,

A V • ul -j- /i(Vu -j- Vu (.) (after Sohon)

The approximation corresponds to the case of infinitesimal deforma-

tions and the whole traditional theory of elasticity embodies this

assumption. Love’s classic work on elasticity, and all subsequent
treatises embody this assumption.

However, in actual problems where the strain is by no means in-

finitesimal, as for example, the elastic state of the earth’s core or

mantle, or in problems involving immense mechanical stresses such

as are produced in some modern manufacturing processes and in

armaments, the simple linear equations no longer hold. In these

cases then, it is necessary to face the problem of finite strain squarely.
I do not intend here, to outline the mathematical theory of finite

strain. I do however, want to point out some new ideas and new

perspectives that the theory has opened up.

More than anything else, the theory of finite strain has been re-

sponsible for a great clarification in our ideas of the nature of stress

and strain and elastic energy.
A second point of interest arises in the case of an isotropic medium.

A rigorous analysis of the stress-strain relations of a perfectly elastic

medium shows that a medium can be isotropic with respect to ad-

ditional deformations from a given state, only when the initial state

of the body is one of hydrostatic stress. Thus no body subject to

a shearing force, is "a priori” isotropic with respect to further de-
formations from this state. This conclusion has immediate reference
to the problem of the propagation of elastic waves near the epi-
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center of an earthquake, or through a sheared zone of the earth’s

crust. An apparent variation of velocity with orientation, a phenom-
enon which has been observed in Southern California and on the

Greenland icecap, is usually explained by an appeal to the crystalline
properties of the medium. We know now, that the initial state of

stress could have a like effect on the medium. We can coin a word

and say that the initial state of stress may render a medium "pseudo-
crystalline”.

Another important result, of research on finite strain is to clarify
the meaning and number of the so-called "elastic constants”. An

"elastic constant” is, by definition, any parameter in the stress-

strain relation that is independent of the initial strain. It is not,

however, as the name would imply, a constant, but is a function

strongly dependent upon the initial state of stress. In the theory of

finite strain the initial stress plays an important part in the stress-

strain relation. For example, in the case of a body subject to an

initial uniform hydrostatic pressure P O,
the following formulae hold

for departures from this state:

1. if the hydrostatic pressure is increased, the PV (pressure vs.

volume) relation is,

P= (VO/V)Vs
{Po + /?/2(1 V/V 0) 3/4 + y/4(lV/Vo) 4/3 + } (A)

where V = volume of the deformed body when subjected to a

pressure P, the subscript zero refers to the initial state and j3 and y

are "elastic constants”.

Stopping the series where we do, and omitting terms of higher
order in (1 —V/V 0), we see that three "elastic constants” are required,
viz. P„ = initial hydrostatic pressure, and (3 and y which are, in

general, functions of P
O. In the corresponding infinitesimal problem,

besides the initial pressure, there is only one "elastic constant”, the

bulk modulus, and the corresponding PV relation (in the infinitesimal

theory) is

P = P 0 k(l V/Vo)

Murnaghan found that the formula (A), cut off at the third term,

was able to express completely, within the margin of experimental
error, Bridgeman’s results on the compressibility of sodium, which were

obtained in a series of experiments performed at Harvard using
pressures up to 10*’ atmospheres.

2. when applied to the case of small periodic elastic vibrations

about this state, it is found that the velocity of propagation of longi-
tudinal type waves is

JA. -f- 2/x P 0
\ P.r
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while the velocity of propagation of transverse type waves is

I fj. Po

\ Po

expressions which differ from the classical formulae by the appearance

of the quantity P 0 which is the initial hydrostatic stress. When P„

is zero, these expressions become equivalent to the classical expression:,

and A and /x become the well known Lame constants.

I should like to close this paper with a few words on the importance
of the theory of finite strain in seismology. It is apparent from what

I have said, that the approach to the problem of elastic deformations

of the earth’s crust, or in the body of the earth should be by means

of the theory of finite strain. The initial state of stress of the earth s

mantle and core is far from infinitesimal. However, transitory elastic

disturbances, like seismic waves propagated outward from the focus

of an earthquake, are, outside the immediate area of focus, virtually
infinitesimal in magnitude compared with the state of initial strain.

Thus it would seem that the problem of seismic wave propagation
can be treated by a combination of the old and new theories.

I want to make brief reference to the work done in applying the

theory of finite strain to seismology. Francis Birch of Harvard has

published the results of an interesting investigation on the effects

of pressure on the elastic parameters of a solid, approaching the ques-
tion from the point of view of finite strain. He has applied these

to the calculation of the variation in seismic velocities within a

simplified earth model. Bullen has utilized these investigations of

Birch in his revision of the calculated density distribution within

the earth. Apart from these interesting endeavors, little has been

done to bring the theory of finite strain to bear on seismological
problems. It is an application that may in future years yield many

interesting results.

Much has yet to be done in the field of finite strain theory. Rela-

tively few problems have been solved. Even the apparently simple
problems, like that of the uniform extension of a rod or wire, bristle

with unsuspected difficulties when the new approach is made. Further-

more much work has yet to be done on non-linear partial differential

equations of the type that occur in this theory.
The theory of finite strain is relatively new territory and relatively

undeveloped. At present, little more than the trailways have been

blazed. It is up to the coming generation of mathematicians to

inhabit the land.
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AN AETHERIAL PROPHECY

JOSEPH F. MULLIGAN, S.J.

On January 15, 1944 Karl K. Darrow delivered the third annual

Richtmyer Memorial Lecture of the American Association of Ph) sics

Teachers before a joint meeting of this Association and the American

Physical Society at Columbia University in New York. The subject
of his talk was "The Future of Physics, Past and Present,” and after

reviewing the rise and decline of the aether theory, Harrow said:

"Will the aether remain a ghost? It is foolhardy to be a prophet,
but I suppose that by the title of this speech I have committed myself
to making at least one prophecy. Therefore, I foretell that the aether

will come back. This old and faithful comrade of the human mind

in its imaginative flights cannot be dead forever. It arose to satisfy
a deep-implanted appetite of the intellect; the appetite seems dormant

now, but it will reawaken demanding to be fed. I do not predict
the return of the aether for tomorrow, nor perhaps for my time,
but I think that some of you will live to welcome it back. The place
of its return is equally beyond my foresight. In the eighteenth century
the aether resided on the continent of Europe, and wr as spurned in

England; in the early nineteenth century it was banished from the

continent and found a happy home in the British Isles. Perhaps it

will come back in 1980 in Australia.” [American Journal of Physics,
12, 60 (1944)].

It now appears that Darrow was a better prophet than he realized,
for the aether has come back once again—and this not in 1980 in

Australia, but in 1951 in Great Britain. The November 24, 195 1

issue of Nature contains a letter from Professor P. A. M. Dirac, of

Cambridge University, in which Dirac, world-famous for his work
in the field of relativistic quantum mechanics, indicates that there

now exist both negative and positive arguments for the existence
of an aether.

Einstein’s discovery of the theory of relativity in 1905 led to the
abandonment of the aether by physicists because it could not be fitted
in with relativity. Dirac claims that the advent of quantum mechanics
has again changed this situation, and that now the aether is no longer
ruled out by relativity. The existence of an aether, moving with a

definite velocity even in a perfect vacuum, appeared to be inconsistent
with the requirements of relativity that there be no preferred direction
in such a region of space-time, but that all directions must be equiva-
lent to one another. Now, however, the aether must be treated from
the viewpoint of quantum mechanics. When this is done the velocity
of the aether at a certain point of space-time will not usually be
a well-defined quantity, but will be distributed over various probable
values which are obtained by taking the square of the modulus of
the wave function representing the aether. Dirac believes that it is
possible to find such a wave function which will preserve the proper-
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ties of the aether, and still represent the perfect vacuum state in
accordance with the principle of relativity. Such a wave function,
however, cannot be normalized, i.e., the integral of the square of its

modulus over all space-time is not finite. Since states corresponding
to wave functions that can be normalized are the only states that
can be attained in practice, Dirac reaches the interesting conclusion
that the perfect vacuum is an idealized state, not attainable in practice.
As he says: "We must make some profound alterations in our

theoretical ideas of the vacuum. It is no longer a trivial state, but
needs elaborate mathematics for its description.”

Dirac’s positive argument for the existence of an aether is based

on his new theory of electrodynamics. This theory predicts that in any

region of space in which there is any electric charge, this charge must

flow with a definite velocity v; and in regions where there is no

charge, v is the velocity with which a small charge would have to

flow if it were introduced. As Dirac says: "It is natural to regard
it as the velocity of some real physical thing. Thus with the new

theory of electrodynamics we are rather forced to have an aether.”

Dirac’s defense of the aether has received support from a number
of British physicists and mathematicians, including Sir Edmund

Whittaker. The Jan. 26, 195 2 issue of Nature contains a number of

letters supporting Dirac’s position, including one from Bondi and
Gold, in which they say that Dirac’s conclusions fit in nicely with

their own theory of continuous creation. In the same issue Dirac

discusses the relationship between these two theories. He says: "Where

matter exists, both theories require it to have the aether velocity.
Where there is no matter, Bondi and Gold interpret the aether velocity
as the velocity of the matter which gets created by their process of

continual creation. I interpret it as the velocity which a small electric

charge would have if it were introduced.”

It is unlikely that Dirac’s conclusions will be immediately accepted
by all physicists, especially in the United States where the aether

concept has been anathema for many years now. Dirac’s theory will
have to stand the test of future theoretical developments and ex-

perimental verifications. But the outstanding position Dirac holds

in the world of theoretical physics would seem to indicate that

there is a good chance that the aether concept will eventually return

to popularity, as prophesized by Darrow.

Dyson, G. Malcolm, Short Guide to the Chemical Literature, Long-
mans, Green and Cos., London, N. Y., Toronto 1951. B°, 144

pp., $1.75. The outstanding virtue of this book is its concise-

ness. It bids fair to introduce the student to the maze of chemical

literature in an effective way.

The first five chapters are bibliographic in nature, consisting of

enumeration, along with historical notes and discussion, of dictionaries,
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journals, abstracts and other reference works according to their typt
the countries in which they are published and the various fields of

interest. The heart of the work is to be found in the sixth and final

chapter. It discusses actual literature searches. In addition, there are

three appendices: 1. a handy reference list of items in the older

(nineteenth century) literature, 2. a sample of literature searching in

the field, of organic chemistry, and 3. a tabic which coordinates years

and volume numbers for the common journals. Author and subject
indexes are also provided.

Like most works of this sort, the book is at its best in discussing
the literature of organic chemistry. Other branches are also treated.

A fresh and interesting approach to the literature of inorganic
chemistry is presented. A frank discussion of the limitations of

literature searches in the other fields is included.

In style, the book is addressed directly to the student; not in-

directly through the teacher, who is apt to determine sales and royal-
ties. It is didactic in the best sense of the word and breathes with

every phrase the overtones of actual experience. It seems to have

been written by a practising chemist, rather than by a professional
bibliographer.

This citation of actual examples of literature searches is satisfy-
ing. The direct approach through handbooks like Gmelin and BeiL

stein into key collections like Chemical, and British Chemical Ab-

stracts, seems eminently practicable. Pitfalls of literature search are

confided with the student and impressed on him through actual ex-

amples. Thus the necessity for checking down two lines of sources,

American and British for example, is urged. Undoubtedly the author

has acquired his information the "hard way” and is happy to pass
the findings on.

With all of these virtues, the shortcomings can be overlooked or

remedied in teaching practice. It seems to the reviewer that the au

thor might have toned down the reliability of Chemical Abstracts

for the run 1907-1919. Lange’s Handbook of Chemistry (7th ed.,
Handbook Publishers Inc., Sandusky, Ohio, 1949) is not mentioned

in this work. Yet it is the fastest key for getting at quick, “spot'
information in Beilstein. Certain items of bibliographic information

are not up to date: for example, there are now four volumes of the

Memorial Lectures of the Chemical Society, not two (p. 39). The

Journal of the American Chemical Society commenced publication in

1879, not 1897 (p. 7). It is to be regretted that the names of the

publishers are generally omitted from the bibliographic data of texts

and monographs.
In the last analysis, a student only learns literature search by

searching the literature. But this book will save him many hours in

his introduction to it. bafSJ
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