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OBITUARY

FATHER FRANCIS J. DORE

1876 - 1944

R. I. P.

Father Francis J. Dore, S.J., was born in Boston March 7, 1876

and after the completion of his course at Boston College High School

entered the Society at Frederick in August 1893. He left Frederick in

January 1894 and returned to study at Boston College and Harvard

Medical School. He received his M.D. in 1901, and made his internship
at the Carney Hospital in South Boston. After a few years in medical

practice he reentered the Novitiate at Roehampton on April 25, 1907

and returned to Woodstock for philosophy. He taught at our college
in Brooklyn for a year, made his theological studies at Woodstock and

was ordained in 1916. He taught at Regis High School in New York

in 1917 and 1918 and at Fordham Medical School during the academic

year 1918-1919. In 1920 he finished tertianship at Poughkeepsie and

was appointed minister at Fordham University. The next year he was

Regent of the School of Social Work and also of the Pharmacy School

at Fordham. For three years, from 1922-192 5, he was Socius to the

Master of Novices at St. Andrew-on-Hudson.

Asa native of Boston he was assigned to the New England
Province in 192 5 and returned to Boston College where for eighteen
years he was Head of the Biology Department and Director of Pre-

Medical studies. For many years he also taught Biology at Weston.

During the same eighteen years he was the faithful chaplain of the

Academy of the Sacred Heart in Newton.

In the summer of 193 5 he was chosen chaplain of the Pan-Ameri-

can Medical Association Congress Cruise to Brazil and the West Indies.
On Feb. 5, 193 6 he was elected Honorary Member of the Massachusetts
Medical Society.

In 1943 when the Army took over St. Mary’s Hall he moved with
other members of the Boston College Community to a house on Beacon
Street. As he was crossing Beacon Street one night in November he
was struck by an automobile and seriously injured. He suffered patient-
ly in St. Elizabeth’s Hospital for more than three months and received

many blood transfusions from Ours and from our students and Alumni.
On February 28, 1944 God mercifully released him from his pain and
full of merits he passed to his reward. His funeral at Weston was at-

tended by a large number of the clergy of the Archdiocese and many
doctors, his former students, who were most devoted to him. His

younger brother Father Leo A. Dore, S.J., celebrated the funeral Mass.
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SCIENCE AND PHILOSOPHY

SOME NOTES ON SPACE

REV. JOSEPH P. KELLY, S.J.

The term "Space”, like Time, is quite commonly used in daily
life. The astronomer tells us that the heavenly bodies are moving
through space. The realtor advertises "space to-let” in office-buildings
and warehouses. In various parts of the city the motorist reads the

inviting signs: "Parking Space”. Though many might find difficulty
in trying to form a strict definition of the term, all would agree
that they understand, at least in a general sense, the meaning of the

word, Space. It seems to connote the idea of extension, in the sense

of area or volume. A business man who considers "space to let” in a

warehouse, might justly figure this in terms of a number (or volumes)
of bales of wool. A parking lot would be thought of in terms of square

feet. And a further connotation of the word would convey the notion

of occupation of this extension. So that an extension capable of being
occupied would seem to be included in the ordinary comprehension of

the term, Space.

The Scholastic Philosophers discussed the notion of Space at great
length. (1). Their analysis led to the conclusion that Space is based

upon or at least is intimately connected with the extension of real,

physical bodies. Physical bodies are extended. They are not concentrated

in mathematical points. One part of the body is outside of the next

part. Therefore they have dimensions, three dimensions, length, width

and depth or height. There is a dimensional interval enclosed within

their physical limits or surfaces. If we consider a body existing some-

where and imagine it removed from that place, we have left an inter-

val, an emptiness—we prescind from the atmosphere—and this interval

may be filled by another body of the same dimensions or by a number

of bodies successively, of similar dimensions. This void is nothing in

itself; it is not a real entity like a house or tree. We may represent it

to ourselves as a receptacle for these bodies. It receives these bodies,

according to our way of thinking of it, somewhat as a glass receives

water that is poured into it. Of course, the glass is a real being but

(1) These notions of Space are based on Suarez, Disputationes Mctaphysicae.

Disp. LI. Sect. I; no, llsq. Sect. 11. no 24. c.f. also "Jesuit Science

Bulletin” May, 193 6. "Suarez and Einstein on Space,” by Rev. J. W.

Ring, S.J.

69



the emptiness is nothing. This vacuity, capable of receiving bodies is

the notion of Space. Space is a vacuity, an empty interval, with a

capacity for being filled by real, dimensional bodies. We look about

and see other bodies and we are able to repeat the process. If we look

about us into the heavens, say from the earth to the sun, we recognize
that the empty interval could easily be filled by other bodies like the

earth. This emptiness can be considered as capable of being occupied
by many thousands of real bodies. It is a non-being but considered

as a huge receptacle for real bodies. This non-being, represented as

if it were something, constitutes the notion of Space. Space then,
is a vacuity, represented as a capacity for physical bodies. It is im-

portant to note that in this concept we should place emphasis on the

capacity of bodies to fill the vacuity and not on the vacuity itself. The

notion is derived from the extended beings. It is their capability to fill

the void that leads to the fillable void, which is Space. Hence, the

concept of Space is constituted of a vacuity and a capacity to be

occupied by real, extended bodies. In Scholastic terms, this concept
is a figment of the mind with a foundation in reality. The vacuity
is a non-entity but is represented as a something by reference to the

real bodies that may or actually do occupy this void. The concept is

partly real and partly ideal. In starting from the real beings, some

Scholastics prefer to take distance as the foundation-notion. In reality
this becomes a question of terminology bceause the distance may be

equally conceived as an interval, devoid of reality but capable of being
filled or occupied by dimensional bodies.

There are other opinions among Philosophers that are not in

agreement with the Scholastic concepts. Kant and the Kantians hold
that Space is a purely mental concept. Kant held that we think of
bodies as spatial by a necessity of the mind. The concept is innate;
it is not derived from the exterior bodies, but, by a law of the mind

we, of necessity, think of them in a spatial manner. In this opinion,
we cannot attribute anything of the notion of Space to objects. Space
is a "mental category” whose function is to represent physical beings
in a spatial manner. To say that bodies exist in Space or move in

Space is a merely mental expression. We cannot agree with Kant’s

doctrine because it seems to contradict experience and gives no account

as to why we should have this notion of Space as part of our mental

equipment. Clarke and Newton went to the opposite extreme attribut-

ing to Space an extramental reality of its own. They considered it a

real being, really existing like other realities such as the earth. While

this ultra-real notion was quite suitable as a background-concept for

Newtonian Mechanics, we have no proof of its reality and to-day,
most of the scientists reject the reality of Space. In the philosophy of

Descartes, Space was identified with extension. That was a logical
position for Descartes because extension was a fundamental notion
in his outlook on the physical world. Some others despaired of solving
the problem of Space and placed it among the enigmas of the universe.
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VARIOUS KINDS OF SPACE

If we consider Space merely as an interval capable of being filled

or occupied by physical bodies, we have what the Schoolmen called
Possible Space. For example, the Space or interval between the earth
and the sun, considered merely as a capacity or receptacle for receiving
heavenly bodies, would be Possible Space. Real Space would be any

part of Possible space which is actually occupied by a real body. For

example, the part of space occupied by the earth or by the Empire
State Building in New York. Such space would have actual dimensions

which are the real dimensions of the body occupying that space. If

we consider Pure (*) and Possible space together, we call it Absolute

Space. Some call it Imaginary Space. This Space extends without limits
in all directions. It is that void that we see when we look into the

heavens, the Space that we conceive as existing before the creation of

the world. Or to put it in another way, if we were to imagine all the

heavenly bodies annihilated, excepting the earth, and look out into
that broad expanse extending above us and to all sides, indefinitely in

all directions, this would be our picture of Absolute Space. This

should not be confused with Geometrical or Mathematical Space.
Geometry is the Science of Space, it is asserted. That space is abstract
extension considered in itself. Propositions in Geometry have nothing
to do with, in fact prescind from the question of the occupation of

space by bodies. In the formation of the concept of Geometrical Space,
we start with extended bodies. We extract from them the notion of

extension, in itself. This abstract extension is the subject matter of

Geometry; its propositions deal with this extension or space. It does

not enter into the question of occupation or non-occupation of space

by bodies.

Notions of Space are based on our ordinary experience; they are

ideas derived through our sense perceptions under ordinary conditions

of perception. They are Euclidian in nature. It is the only type of

Space to be found in this way because we can have no experience of

other bodies than those which exist in the world about us. Bodies are

three dimensional and our spatial concepts will be three dimensional,

supposing their foundation in sense perception. Time is said to be a

fourth dimension but it is not of the same nature as a spatial dimension.

The question may be asked whether there are spaces of more than

three dimensions. If there are, we cannot have direct experience of

them through the senses. In a later paper, we will have more to say

about multi-dimensional space. (2). When we discuss one or two-

dimensional space, as in a line or a surface, we do so by an act of the

intellect, prescinding from the other dimensions, for a line or a surface

(*) Pure Space is the same as Geometrical or Mathematical Space. It is

extension considered in itself.

(2) Jesuit Science Bulletin. Oct. 1937. "Some Philosophical Aspects of

Multi-dimensional Space.” Rev. R. B. MacDonnell, S.J.
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is such do not actually exist. In the physical order only three dimen-

sional bodies exist.

Closely connected with the notion of Space, is the concept of

Place. It is also called Übication or Location. It answers the question:
Where is it? From ordinary observation, seeing some bodies move up-

wards, and others downward toward the centre of the earth, the

Medieval Schoolmen concluded that every body had its natural Place

to which it moved by a sort of impulse of nature. This Place or Loca-

tion was necessary for the concept of local motion and distance. Local

motion in a body is the movement from one place to another. Place

is the term, initial and final, of motion. Likewise, distance is measured

from place to place, e.g., Boston to New York. In the method of

modern science, a moving body is really considered as a point, (the
matter of a body concentrated at the centre of gravity), moving from

one point, (initial place), to another point, (terminal place). This

is a convenient fiction for the sake of accuracy. The Philosophers
looked at the problem from a qualitative point of view, and divided

Place into Internal and External Place. The Internal Place is that por-
tion of space occupied by a body. It is a definite part of space, having
the actual dimensions of the body filling it. In this sense, Place is a

quality of a body, a localizing accident, which fixes a body in a definite

part of space. In a body at rest, it is considered as something per-

manent.

The Scholastics recognized that these notions were not sufficient,
since they were too indeterminate for the definite location of bodies.

They might be anywhere according to this meaning of Internal Place.

So, they added External Place to the explanation, a reference to the

surrounding objects. Place, then, is that portion of space occupied
by a body, but considered in reference to surrounding bodies. It is a

relative quality of a body, connoting a relationship to other objects.
Hence they said, if only one body existed, e.g., the earth, it would

have no place, according to their definition. There would be no sur-

rounding bodies. In modern parlance, if one were to ask whether a

single body could have a place, it would be considered a "meaningless
question.” The External Place of a body was defined as "the immobile

surface of the surrounding matter.” The place of a ship is the surface

of the water in contact with the surface of the ship. The place of a

rock imbedded in a mountain would be the immediate surface of the

earth surrounding the rock. Fair enough for bodies at rest but not

very clear for moving beings. An aeroplane flying through the air
is changing its position constantly, and equally so, a ship moving at

sea. The definition states that the surface should be immobile. The

philosophers saw that something was needed to give value to the defini-
tion. The "immobile” must be relative. Hence, moving bodies were

referred to the surrounding surface and further to the centre of the
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earth or to the poles which were considered as fixed points. Others

referred to the seashore as the fixed point.

Thus, Space, Place, Location and Distance are closely bound up

with the notions of Space. Modern Science deals with these ideas but

mostly from the point of view of measurement, while the Scholastics

took the qualitative viewpoint. This outlook does not offer all the

precisions and accuracy of measurement that we find in science. How-

ever, it does furnish concepts which may well be the foundation

measurable determinations.

EDITOR'S NOTE.—The two articles on TIME, c.f. Jesuit Science

Bulletin, Vol. XXII, p. 36, and p. 97, and the present article on SPACE

treat these topics from the point of view of Scholastic Philosophy.
There will follow a discussion of these questions in their relation to

Space and Time in Modern Physics, by Rev. Thomas H. Quigley, S.J.,
Prof, of Physics at Weston College, and Rev. Joseph P. Kelly, S.j.,
Prof, of Cosmology at Weston College.
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ASTRONOMY

THE NORTH POLAR SEQUENCE

REV. F. J. HEYDEN, S.J.

The early survey catalogues of stars aimed chiefly at deriving
exact positions of the stars. Magnitudes played the subservient role

of aides to identifying the stars corresponding to the given positions.
(1) Hence accurate magnitudes were only accidental, and there

existed no definitely established scale or zero point upon which all

estimates could be based.

From earliest times the naked eye had been the principal photo-
metric instrument and while no strict attention was paid to an ac-

curate scale for differences in brightness between stars, still the eye

obeyed a law from which a scale could be derived. This law known

as Fechner’s Law, is empirical and states that the intensity of visual

sensation varies as the logarithm of the strength of the light stimulus.

The normal eye will discern a difference in two light sources amount-

ing to only 1%.

In 1810, the same year in which the image of a star was photo-
graphed for the first time at Harvard, Pogson proposed the first stand-

ard scale for stellar magnitudes,

m = 2.5 log I —)— C

where m signifies the apparent magnitude, I the intensity, C a con-

stant determining the zero point, and 2.5 was derived from the fact

that in the oldest magnitude scale the sixth magnitude stars were

roughly 100 times fainter than a first mangnitude star. Hence,

I
l

= 2.512 s
= 100

h

The zero point of Pogson’s proposed scale was to be determined by
the 6th magnitude stars of the Bonn Durchmusterung.

Not until about 18 80 was there any effort made to establish this
scale once and for all by selecting a certain group of stars as reference
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standards. At this time it was proposed by the American Association

of Sciences (XXXIII, 8) that a group of stars in the north polar
region be chosen for this purpose. Accordingly 21 stars, many of

which are still members of the North Polar Sequence, were set apart

and magnitudes estimates to the first decimal place. (A list of these

stars is given in a paper by E. C. Pickering entitled "An Investigation
of Stellar Photography,” 18 86).

With the advent of faster photographic plates (the first photo-
graph had been taken on a daguerrotype) Professor Pickering made

several trial exposures on the polar stars. The photographic magnitudes
determined from the plates showed a degree of consistency between

successive observations that exceeded any degree of accuracy pre-

viously attained by other methods of photometry. Single measures

of photographs taken on different nights differed on the average by
less than a tenth of a magnitude.

Accordingly a program was undertaken to determine the photo-
graphic magnitudes of the polar stars proposed by the American

Association. As might be expected, a difference between photographic
and visual magnitudes was found, but at this stage neither the visual

or photographic scales had been well enough determined to show a

reliable color index. In fact the stars of the sequence were not all of

the same color.

The effect of color upon the scale of magnitudes was appreciated
from the very beginning. Pogson’s scale had been accepted for visual

magnitudes, and the first experiments with photographic methods

indicated that the same scale could be used provided proper allowances

were made for the color of the stars. Unfortunately, in the early be-

ginning spectra and colors of stars were not well known and space

reddening was not even suspected.

Around 1888 the work on the North Polar Sequence really began.
The first accurate results appeared some time later in H.C. 12 5. This

first standard consisted of only ten stars. The North Polar Sequence
was not considered final in that form. As the program developed the

Harvard workers readily realized that the problem of setting up an

absolute scale over a range of all attainable magnitudes presented more

difficulties than caught the eye at the first glance.

First of all the stars chosen for the standards had to be of the

same color in order to conform to the same scale. Ihe Henry Draper

Catalogue had been underway, and spectra of stars down to magnitude
8 could be accurately typed. Fainter stars were not left entirely to

*H.C.=Harvard Circular.
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guess work. It was possible to characterize them as white, yellow or

red down to a certain limit. Very faint ones had to be left almost

entirely to conjecture. Even with the known colors of stars, Pickering
recognized from long experience with photometric problems that
the absorption characteristics of telescope lenses could introduce sys-

tematic errors which could destroy the objectivity of the standard

and vitiate its use in reference to results obtained with other in-

struments. He therefore recommended that as many different kinds

of methods and instruments as possible be used independently to check

on one another and to give an accidental nature to otherwise system-

atic errors.

With the obvious need of great precaution in mind the final

adopted North Polar Sequence consisted of 46 stars, all nearly of the

same color, with an additional sequence of 12 reddish stars and a

group of 38 supplementary stars. The 46 stars were numbered 1,2,
3, etc.; the red stars, lr, 2r, 3r, etc.; and the 38 supplementary ones,

Is, 2s, 3s, etc. In the main sequence all stars brighter than 11.4 are

A type save one which is type F. Between ll mag- and 16 mag - the stars

are relatively white. For those fainter than 16mag- the colors are not

known. The stars of the red sequence vary from type G to type M.

This great number of stars facilitated the derivation of the absolute

scale and insured greater precision in its extension from star to star.

Thirteen telescopes, varying in aperture from the 0.5 ,/ Ross-Zeiss

to the 60" Mount Wilson reflector were used for some 700 different

exposures on 28 8 plates taken on the Pole, and on 10 plates taken on

the Pleiades and Praesepe. These latter were made as a precautionary
check lest the absolute value of the scale for the Pole be influenced by
coloring of the stars.

The variety of instruments easily covered the entire range from

the brightest to the faintest stars with plenty of overlap between

the plates of the different telescopes. All exposures could be made

sufficiently short to avoid atmospheric difficulties.

The plates were divided into groups, all of which were handled
independently and weighted. This method of grouping provided a

control over the vast quantity of material so that defective applica-
tions of methods and instrumental vagaries could be quickly rec-

ognized.

As Professor Pickering had foreseen, the most accurate results
could only be assured by varying the methods used for the derivation
of the absolute scale. Six different methods for reducing the intensity
of the light from the stars by amounts which could be computed or

accurately measured in the laboratory were adopted. The basic prin-
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ciple behind all these was to cut down the light of a brighter star

until its reduced image matched the unreduced image of a fainter
star. Then in general,

m
f
=m

b + C

where m
f

signifies the apparent magnitude of the faint star, the

apparent magnitude of the brighter one and C the reduction constant

corresponding to the method used. These constants were determined
in terms of magnitudes according to Pogson’s scale. Although almost

any magnitude interval Am could be found with the methods used,
the interval best suited for keeping scale errors at a minimum was

about 3 magnitudes.

The six methods adopted at Harvard were as follows:

1. Extra-focal images. The photometric laws governing the size
and density of such images are well known. Brightness depends on

the law that the intensity is inversely proportional to the distance

from the focal plane. The light from different stars can be equalized
by changing this distance and in the same way the brightness can

be changed by known amounts. The ratio of the area of an image
to the area of the free aperture of the objective provides an accurate

determination of the reduction of light for images of different areas.

This method was used by Professor E. S. King in setting up the scale

for the bright end of the North Polar Sequence. (H.A. 76) Because

the light of the stars is spread out so much in an extra focal image,
this method cannot be used for stars fainter than 9 m.

2. Iceland Spar jdates. The principle of this method has been

used in the visual polarizing photometer. When the light of a star

passes through a pair of doubly refracting plates, the intensity of the

transmitted beam is a function of the angle between the axes of the

plates. This dependence is explained by the fact that the intensity is

proportional to the square of the amplitude of the light wave, and in

double refraction the amplitude is reduced by increasing the angle
between the axes. The difference between the light transmitted with

the axes parallel and that transmitted with them at an angle <f> is

given by the relation

Am = 2.5 log tan- cf>

In photographing stars through two such plates in the program of

the North Polar Sequence, each star gave four images. Generally two

of these images were badly distorted and could not be used.

3. Absorbing screens. A wire mesh screen placed over the ob-

jective or in front of the photographic plate, would reduce the in-

tensity of point light sources by the amount
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Am = 10 [log (a + b) log b]

where a signifies the thickness of the wires, and b the interval be

tween the wires. In the application of this method at Mount Wilson,
Seares preferred to determine the reduction constant for the screens

experimentally by means of a constant light source and a Lummer-

Brodhun photometer, (Mt. W.C.* #80) because other factors be-

sides the dimensions of the mesh seemed to be involved.

Besides wire mesh screens other light absorbing media were used,
for example, a perforated screen over the objective, shaded glass or a

piece of photographic film over the plate. The constants for these

all had to be determined experimentally in the laboratory.

4. Half apertures. One half of the aperture was covered so that

theoretically in the same exposure time the light reaching the plate
from a star would produce an image only one half as intense as the

full aperture image.

5. Circular diap/yrams. Placed over the objective these reduced

the intensity in proportion to the reduced effective area of the lens.

A
a

Am = 2.5 log
A

o

where A signifies the partial aperture area and A the full area.

6. Auxiliary Prism. A small prism with very slight dispersion
was fastened to the center of the objective. The primary image of

each star was then accompanied by a faint prismatic companion dis-

placed to one side. The reduction constant could again be determined
theoretically from the ratio of the area of the prism to that of the

objective. This method, on account of the small area of the prism
gave large reduction constants amounting to about 5 magnitudes.
It had the advantage of requiring only a single exposure.

These methods of reducing the intensity of star images by known

amounts were sufficiently independent of one another. But much care

and caution had to be exercized in applying them. Sources of error in

some of them were obvious, for example the variations in the ab-

sorption over the objective which changed the theoretical constants

for the auxiliary prism and diaphrams. These errors had to be deter-

'Mt.W.C—Mount Wilson Contributions.
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mined as far as possible, but in many instances it was hoped that they
would be small enough to be neglected and that they would eventually
smooth out in the final means for all the methods.

Most of the methods implied the use of equal successive exposures

on the same plate. An exposure without any absorbing screen or

diaphram gave the so-called primary images, and the succeeeding ex-

posure with the absorbing medium gave the secondary or reduced

images. Since the stars were assumed to be of the same color, not much

attention was given to the differential absorption for different colors.
One bad feature in the use of multiple exposures was found. The sen-

sitivity of a photographic plate changed very rapidly in the beginning
of an exposure, so that another factor besides the reduction constant

affected the results. This was a serious error and had to be eliminated

as far as possible by reversing the order in which primary and sec-

ondary images were taken on successive plates.

The distance correction also proved troublesome and the best re-

sults were obtained only when the measures were confined to the

immediate center of the plate. Seares determined the distance correc-

tion for the plates taken with the 60" Mount Wilson reflector and

these were used in the final reduction of the plates from this instru-

ment at Harvard. His method consisted of a series of equal exposures
of the same stars on different parts of the plate. The variation of the

images of the same stars could then be measured as a function of

the distance from the center of the plate. He found that with in-

creasing distance the images of bright stars became larger and those

of faint stars smaller.

The measurement of the plates was all done by means of a com-

parison scale, except in the case of extra-focal images. By comparing
faint primary images with similar secondary images the difference in

magnitudes between the bright and faint primary images became

immediately known. The comparison scale is designed for comparing
these images of the stars. It consists of a series of graded exposures

on the same star, each successive image in the series differing by a

factor of 2 or 3 in the exposure time. In general the factor 3 gave

differences of about one magnitude between the images and the factor

2, about 0.8 mag. With a little experience the observer could estimate

the size of a star image to within a tenth of the interval between two

images of the scale. A scale was prepared for each telescope used so

that the images on the scale would always appear comparable with

those on the plates.

Seares has shown (Mt. W. C. #80) that the intervals of the

comparison scale can be reduced to magnitudes by the simple relation,

Am

b =

As
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where As signifies the difference in comparison scale corresponding
to Am computed for a set of primary and secondary images of a star.

Once the factor b is determined,

or m = a -(-* bs Am

m = a -j- bs

depending on whether s signifies the measure of a secondary or a

orimary image. The constant a is determined by the zero point and

Am is the reduction constant.

The above method was not used at Harvard for deriving the

absolute scale of magnitudes, although the graphic method used would

yield a mean value for b. The method followed at Harvard was known

as process A, and was an adaptation of the procedure for calibrating
thermometers suggested by Professor S. W. Holman (A. J. S. :: 123,

278).

From 84 plates, 20 series of magnitudes were derived at Har-

vard. An absolute scale was determined from each plate independently.
The zero point which was not essential at that stage of the program

in nearly every case was based on a provisional scale of photometric
magnitudes. The average deviation in the absolute scale was -{- 0.03 ma”

and in the final mean, ten plates having average deviations exceeding
5 x 0.03 mag were rejected.

Once the absolute photographic scale had been established, a

large number of measurements were made from other plates and their

relative magnitudes based on the new absolute scale. These helped
to reduce the accidental errors of the absolute scale. A further test

was made by setting up absolute scales independently in the Pleides

and in Praesepe to detect any influence of coloring in the scale de-

rived from the polar stars. This check resulted in a correction of—-

0.048 mag - to each of the final magnitudes listed in H.C. 170.

Since the absolute scale was determined with thirteen different

telescopes, each of which contributed some portion to the entire range

of the scale, the color equation of each had to be known and all re-

duced to some standard, before an arbitrary zero point could be adopted.
All observations were reduced to the 1 inch Cooke and the 8 inch

Draper telescopes at Harvard. This final scale along with the other
incidental corrections constituted the homogeneous photographic scale.

The arbitrary zero point was defined by international agreement,
it was so fixed that the photographic magnitudes would equal on the

average the photometric magnitudes of the Harvard scale for stars

having spectra of Class AO between 5.5 and 6.5
mag. mag.

A.J.S—American Journal of Science.
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Although Harvard devoted considerable effort and time to pro-

viding the world with a Standard Sequence, it was not alone in the
task. Five other observatories made determinations of an absolute scale
for the same sequence stars. Foremost among these was Mount Wilson
where F. H. Seares with the 60" reflector obtained a very accurate

photographic scale and provided much helpful criticism in the re-

vision of the final results at Harvard. He found for example that

the Harvard absolute scale diverged from the Mount Wilson scale

at the bright and faint ends of the sequence. The explanation of these

divergences could not be given fully, although Seares was inclined

to attribute the divergence at the faint end to a combination of space

reddening and the method used in the final reduction at Harvard.

(Mt. W.C. 81). In general the agreement of the scales

was very good. Between 4mag- and 7 mag - there was a divergence of
about 2%, while between 7mag> and 10mag - the number of stars was

too small to satisfactorily eliminate accidental differences. From
2.6 mag - to 10mag- the mean error was only about -f- 0.03 mag- The

stars fainter than 16niag- had been observed only with the 60" at

Mount Wilson and it was desirable that these be observed elsewhere

with a different instrument to provide a valid comparison. His final

conclusion was that for stars brighter than 16 there will be lit-
°

mag.

tie need for adjustment of the absolute scale in the future.

Besides deriving an independent photographic scale, Seares also

contributed an excellent photovisual scale for the North Polar Se-

quence which agrees remarkably well with the Harvard visual scale.

Both scales coincide at 6 mag- and at 12 mag Obviously color causes some

difficulty in the intervening intervals. It extends to 17mag - (A table of

these magnitudes is given in the H. der Ap.* Band 11/2, pages 495 et s.)
The photovisual and photographic scales for Mount Wilson are mutually
consistent at far as 17mag - the limit of the photovisual scale. The

maximum difference is 0.09 magi at 10 mag - The photographic scale ex-

tends to 20 mag-

By analysing the results from five different observatories, Seares

obtained a weighted mean deviation for each. The following table

contains these deviations along with the title of the program, its au-

thor and the references in which the work is discussed.

The following abbreviations have been used.

Gr. signifies Greenwich

HI signifies Harvard magnitudes by Miss Leavitt, 10"' 16m

HII signifies Harvard magnitudes by Professor King, brighter
than 9 m .

*H der der Astrophysik.
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Program M. Dev. Author Reference

Gottingen 0111.038 Schwarzschild Gott. Actinometrie

Gr. I 0.028 Chapman & Melotte M.N.74,191 3; Mt.W.C.#25.
Gr. II 0.025 S. Jones M.N. 82,1921

HI 0.019 Leavitt H.A. 71

HII 0.029 King H.A. 76

M.W.60" 0.022 Scares Mt.W.C.#97 & #235
M.W.10" 0.025 Seares & Humason Mt.W.C.#234 & #235
Potsdam 0.041 Schwarzschild &

Dziewulski A.N. 198, 1914

Yerkes 0.047 Parkhurst Ap.J. 36, 1912

It is clear from the above table that the work done by Miss
Leavitt at Harvard was especially precise. Independent comparisons
were made at Harvard with the results from Potsdam, Mount Wilson,
Greenwish, Gottingen and Yerkes. These warranted certain corrections
to the final results. The zero point was corrected by 0.08 mag - The

resulting magnitudes were published in H.A. 71.*

Further critical studies of the results and data showed a few

slight irregularities still extant in the Harvard scale. Most of the dis-

cussions centered on the reduction to a standard color system. The
final corrections were published in H.B.* 781. The average correction
from 10mag - to 15.5mag - was about 0.25 mag- Stars fainter than 16 m. 2
are rejected as standards until further checked by other independent
observations. The early part of the scale has a slight correction ad-

vancing gradually from —o.l4 mag- at 2.5 mag - to 0.00 mag - at 7raag-

and thence to 0.18 mag- at 9.5 ma&- A table of these corrections is given
in H.B. 781 and in the mimeographed notes by Mrs. Gaposchkin on

the North Polar Sequence.

The final scale may be considered accurate for all purposes. The
zero point adopted in 1922 with reference to A0 stars was found to

be vitiated by about -j- 0.1 mag- due to space reddening by a nebula
at the pole. Hence the zero point was not strictly applicable to AO

stars in other parts of the sky. The previous corrections given in

H.B. 781 necessitated a correction to all Harvard Magnitudes pub-
lished prior to 1922. Further corrections would have made matters

too complicated. It was therefore proposed in the 1938 meeting of
the I.A.U. ' that the zero point defined in 1922 be more or less
abandoned for photographic magnitudes and that the North Polar
Sequence as it now stands be accepted as defining the zero point for
the International Photographic Scale. This simply means that the
color index of A0 stars will no longer be 0.00 mag- but —o.l4mag-

*H.A.=Harvard Annals.
:!'H.B.z=Harvard Bulletin.
r I.A.U. = International Astronomical Union.
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It is evident that not all of the difficulties had been anticipated
in selecting the north polar region for a standard sequence. The

primary aim was to establish a set of standard magnitudes which
could be reached at all times of the year. It was also intended to ex-

tend this standard to all of the Harvard Standard Regions and the

Kapteyn Selected Areas. Several disadvantages have been recognized,
among which the most troublesome have been the presence of ab-

sorption in the north polar cap and the fact that photographic images
of polar stars are noticeably different from those of equatorial or

low latitude stars. This latter fact makes it difficult to transfer the

sequence in polar comparison plates.

Nevertheless the precision of the results is a lasting memorial

to the many scientific workers who devoted so many years to the

trying routine of measuring and reducing plates, and to extracting
every tangible error from a vast mass of observational material.
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MATHEMATICS

THE FOUR FUNDAMENTAL OPERATIONS OF ALGEBRA

REV. CONRAD BILGERY, S.J.

Current text books of College Algebra advance a variety of

reasons for the validity of these four fundamental operations.

Some authors base their proof on concrete applications of algebraic
numbers, such as loss and gain, opposite directions of positive and

negative numbers, and so forth.

But Algebra is primarily an abstract science, and the laws of the
four fundamental operations must logically flow from the abstract

nature of algebraic numbers.

Kantian mathematicians realize this fully, but they have no

concept or definition of an abstract negative number. Hence, in

Kantian fashion they have recourse to arbitrary assumptions.

Let the reader open the College Algebra by Jos. B. Rosenbach and
E. A. Whitman (Ginn & Cos. 1933 ). On page 5 he meets the significant
title, "Fundamental Assumption of Algebra.”

Now, as to the explanation:

"The four fundamental operations of Algebra are addition,
subtraction, multiplication and division, and these operations are

extensions to a larger class of numbers of the same operations in

arithmetic. In order that these operations may be extended to general
numbers, certain fundamental laws governing the use of general
numbers are necessary. These are in the nature of assumptions, since

it is not possible to prove them. They are known as the fundamental

assumption of Algebra, and play much the same role in Algebra
as the postulates do in Geometry.”

The conclusion is evident:

"Algebraic truth is based on assumption.”

Of course, these Kantian modernistic mathematicians admit that

said laws are convenient and in this sense very plausible.
In his address, "Infinity and Non-Euclidean Geometry,” the writer

showed at the Chicago convention in 1940 the nugacity of these

Kantian modernistic geometers.
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Positive numbers of Algebra follow as such the laws of Arith-
metic, but before we can establish the laws of negative numbers in
combination with positive numbers, we must first determine the manner
in which abstract negative numbers are derived from the numbers of
Arithmetic.

The answer is simple: We arrive at a negative number if we

attempt to substract a greater number from a smaller number.

e. g.:
s—4=l

s_s=o

5 6=5 5 1 = 0 1 = 1

5—7 = 5 5—2 =0 2=—2

a— (a +x) —a a x=o x = —x

From these negative remainders we come to the evident definition
of an abstract negative number. A negative number is a loose com-

bination of two ideas. Thus ( —5) expresses the absolute value of the
arithmetical 5, and we attach to it the operation of subtraction, i.e.,
5 is to be subtracted from 0, or from any other value if the latter be

on hand.

In the abstract, the minus sign of a number does not express a

quality, but is the symbol of the operation of subtraction.

For the sake of emphasis, especially in concrete applications of

algebraic numbers, the pure number of arithmetic is adorned with

the plus sign and is called a positive number.

From this follows the new or algebraic definition of zero, for zero

is now the sum of two numbers, opposite in sign but of the same

absolute value. Thus, (-(-a) -)- ( —a) = 0

In reality this means that a— a = 0

In the abstract a positive number is simply a number of Arith-

metic and the plus sign can be omitted, while a negative number is a

number of Arithmetic to be subtracted.

1. Algebraic addition.

+ 5 _|_ ( +7 ) =s+7=l2
( —5) ( —7) means that 5 and 7 are both to be sub-

tracted, or, all in all, 12 is to be subtracted.

Hence, (—5) + (—7) = —l2

Hence, Rule 1. Numbers of like signs are added by taking
the sum of their absolute values and prefix the common

sign to the result.
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Again:

( + 12) + (—7)-5+7—7— S + o=s

(-12) + ( +7) = (—5) + (—7) + ( +7) =—s+7—7 5

Rule 2. Numbers of unlike signs are added by finding the

difference of their absolute values and prefixing to the

result the sign of the greater absolute value.

2. Algebraic subtraction.

( + 12) (+7) =l2 7=5

or [5 + (+7)] (+7) 5

or 12 + (—7) =l2 7=5

(—l2) (—7) = [(—s) + (—7)] (—7), i.e.,
take away ( —7 from [(—5) + ( —7)] =—s

Also: (—l2) + (+7) = —l2 + 7 = 5

Rule: Change the sign of the subtrahend and add algebraically.

3. Algebraic Multiplication.

a) If the multiplier is positive:
( + 12) . (+ 3) = 12 . 3 = 36

( —l2) . (+ 3) = Three times (—l2) = —36

b) If the multiplier is negative:
( + 12) . ( —3). Here the multiplier implies the idea of

multiplying by 3 substractively.
. • . substract ( + 12) .

3 from 0 = 0 —3 6 = —36.

(—l2). ( —3). Take ( —l2) three times and substract, i.e.,
subtract ( —l2) . 3 from 0.

... (_l2) (—3) = 0— (—36)
0 = 36 + ( —36) from which we must take away
or remove ( —36) = +36.
Rule: In algebraic multiplication like signs give + and

unlike signs give .

4. Algebraic Division.

a) ( + 12) 12

( + 3) 3

—l2 1 (—l2)

+33

b) If the divisor is negative:
In that case, the divisor again implies a double process,—

that of division and that of subtracting the result.
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+ 12 1

i.e., take —of 12 and subtract it from 0.

—3 3

+ 12 1

. • .
= —of 12 =0 4 = —4.

—3 3

—l2 1

i.e., subtract —of (—l2) from 0 = 0 ( —4)
—3 3

0 = (+4) + ( —4), and taking away ( —4) there

is left + 4.

Rule: In algebraic division like signs give + and unlike signs

give —, as in case of multiplication.

Conclusion:

The laws of the four fundamental operations of Algebra are

logically derived from the abstract notion of negative numbers and

the nature of the numbers of Arithmetic. Hence, these laws are not

based on assumptions, but on self-evident truths.

N. B. Shortly after the submission of this article to the Jesuit Educational

Quarterly, Father Bilgery died at Denver, August 12, 1945. R. I. P.
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PHYSICS

THE CLASSICAL THEORY OF DISPERSION

JOSEPH F. MULLIGAN, S.J.

Two previous articles have treated of the exponential solutions of

free, damped and forced electrical oscillations/ 1' In this article the

method previously outlined will be applied to the dispersion of light.

The electromagnetic theory of light explains dispersion, (i.e., the

variation of index of refraction with frequency), on the basis of the

electrical properties of matter. Matter is composed of atoms made up

of a positively charged nucleus and extra-nuclear electrons. The nucleus

is a compact group of protons and neutrons. The protons are positively
charged particles, while the neutrons are electrically neutral. The num-

ber of protons gives the atomic number of an element, while the com-

bined number of protons and neutrons gives the mass number of the

element. The charge on the electron is equal and opposite to the charge
on the proton, and since the atom is electrically neutral, the number

of extranuclear electrons is also equal to the atomic number. These

extra-nuclear electrons are capable of vibrating with definite natural

frequencies about the nucleus. Some of these natural frequencies might
be expected to be of the order of magnitude of frequencies encountered

in ordinary light. If this were so, we would expect that these vibrating
electrons would influence the passage of light through matter, and

would result in the phenomenon called dispersion. That this model

gives us a first approximation to the true picture is indicated by the
close agreement of experimental observations with theoretical pre-
dictions.** A more exact theory of dispersion demands the use of the

quantum theory.

We will confine this discussion to dispersion in gases, for here the

interaction between atoms (or molecules) is small enough to be neglect-
ed. Our procedure will be first to consider the equation of motion of

the electrons under the influence of the light wave, then apply Max-
well’s equations to obtain the equation for the propagation of the light
wave through the gas, and finally investigate the relation of the index

of refraction to the frequency of the light wave.

* Robert O. Brennan, S.J., "The Exponential Solutions of the Equations of the

Oscillator,” A. A. J. S. Bulletin, September and December, 1945.

** Cf. Wood, Physical Optics, pp. 490 ff.
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In the case of a dielectric, in this case a gas, in which there are

no free charges and hence no current density due to the movement

of free charges, Maxwell’s first equation for the electromagnetic field

takes the form, for the x-component: *

Dy(W) Dz(V) = (K/c) X (1)

where K is the dielectric constant of the gas, c is the velocity of light
in a vacuum, X is the x-component of the electric intensity vector E,
and V and W are the y and z-components of the magnetic intensity
vector H.

This equation expresses the time rate of change of the x-component
of the electric field in terms of the space rates of change of the y and

z-components of the magnetic field. As yet, however, this equation
is not complete. Although there are no free charges present in the gas,
and hence no flow of free charges, the passage of the light wave

through the gas causes something similar to a current flow. The light
wave displaces the negatively charged electrons with respect to the

centers of positive charge. This so-called polarization of the medium

results in a displacement of bound charges which is equivalent to a

current flow. Suppose there are N electrons per unit volume in the

gas, each with the same mass m and the same charge e. If x is the

average velocity of these electrons in the x direction due to the

polarization of the medium, then Nx pass through a unit area at

right angles to the x direction per second, and the displacement of

charge due to this movement is Nex. This is equivalent to the current

density u. Since according to Maxwell’s theory a current in the gas

would introduce a term 47tu /c on the right hand side of equation (1),
to account for the polarization of the medium, equation (1) must

now take the form:

Dy(W) Dz(V) = (47rNe/c)x + (K/c)X (2)

Equation of Motion of Electrons

We suppose that the electrons are subject to an elastic restoring
force proportional to the displacement x, and to a damping force

proportional to the velocity. A light wave of angular frequency w

(2 7r times ordinary frequency) passing through the gas subjects each

electron to a sinusoidal external electric field, the x-component of

whose intensity is:

Throughout this paper we will use Dy(W) as meaning the partial derivative of

W with respect to y. Second partial derivatives, for example with respect to

x and y, will be written First and second partial derivatives Vyith

respect to the time will be written in the familiar form x and x.
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X = Xo exp(jwt) (3)

Since the charge on the electron is e, the force acting on each

electron is eX. The resulting motion for each electron is then, for the

x-coordinate:

mx -j- mRx -f-w2
mx = eXo exp(jwt) (4)

where w is the natural angular frequency of the electron and mR is

the damping factor.

Since the right hand side of (4) is complex, it is clear that x

must also be complex. Throughout our entire discussion we will con-

tinue to work with complex quantities of the type X = Xo exp(jwt).
When we have obtained a solution in complex form, the real part of

that solution will be the part which has physical significance, and in

which we are interested.

It is to be expected that the frequency of the resultant motion of

the electron will be the same as the frequency of the impressed light
wave, and so we take as a trial solution x = A exp(jwt), where A

is complex, and proceed as in the solution of the forced oscillator. If

we neglect the "transient” part of the solution which dies down too

quickly to be of importance, our solution takes the form: ,

eXo exp(jwt)
x = (3)

m(w2
w

2 -f- Rjw)

This equation indicates the "steady-state” motion of the electron.

We are more interested however in discovering how this motion of

the electron reacts on the light wave and affects its propagation
through the gas.

Propagation of Light Wave

Replacing Xo exp(jwt) by its value from equation (3), we can

rewrite equation (5) as:

m(w2
—w

2 -j- Rjw)x - eX (6)

where both sides are still in complex form. We now want to combine
this with equation (2). To do this we multiply through by Ne and
obtain:

m (w 2
—w

2 + Rjw) Nex = Ne 2X
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Differentiating with respect to the time and bringing the bracket

on the left to the denominator on the right, we have:

Ne 2/m
Nex X (7)

w 2 —w 2 -j- Rjw

Substituting this value for Nex in equation (2):

47rNe 2 /m
Dy(W) Dz(V) = (l/'c) (K -} —) X (8)

w 2 —w 2 -)- Rjw

Since the term in the second parenthesis is complex, we will for

convenience let it equal (n—jk) 2 . The physical significance of this

term will be seen later. We then obtain:

Dy(W) Dz(V) = [ (n—jk) 2 /c] X (9)

By combining this equation with Maxwell’s equations for the

magnetic intensity, the following equation can then be derived:

Lap X [ (n —jk) 2/c 2 ]X = 0 (10)

where Lap X ( = Laplacian of X) = (D 2
xx -j- D 2

yy -(- D 2zz) X

This equation can be shown to be the differential equation of a

harmonic wave. The familiar equation for a transverse harmonic wave

moving along a string placed on the x-axis is:

S = So cos w(t—x/v) (11)

where S is the displacement, So the amplitude or maximum displace-
ment, and v the phase-velocity of the wave. By successive differentia-

tions we can derive from this equation the differential equation of the

wave, which proves to be:

D 2xx(S) —(1 /v 2 ) S= 0 (12)

Similarly the equation of a harmonic wave travelling in any ar-

bitrarv direction through space is given by the expression:

S = So cos wft (fx -j- gy + hz)/v] (13)
where f, g, h are the direction cosines of the normal to the wave

front. The differential equation of such a wave is:

LapS— (1 A2 ) S== 0 (14)
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This equation is identical in form with equation (10), provided
c 2/ (n— jk) 2

= v 2. Since (14) is derived from a wave motion, it is

obvious that equation (10) also represents a wave motion. Since (13)
is a solution of (14), as can be proved by direct substitution, it is

clear that a solution of equation (10) takes the form:

X= Xo cos w[t —(n jk) (fx + gy + hz) /c] (15)
where, it will be remembered, X is the x-component of E, the intensity
of the electrical field due to the light wave. We can write (15) as an

exponential if we realize that we are considering only its real part:

X = Xo exp jw[t (n— jk) (fx + gy + hz)/c]
= Xo exp[ —wk(fx + gy + hz) /c]

exp jw [t n(fx -f gy -f- hz)/c]

This is our solution in complex form. To get a solution that

represents the actual propagation of the wave through the gas, we

take the real part of this, and obtain:

X = Xo exp[—wk(fx -f- gy -j- hz)/c] cos

w[t n(fx + gy + hz)/c] (16)

By a comparison with (11) and (13) it can be seen that the

cosine term represents the motion of a harmonic wave propagated
through space. Since v in (11) and (13) represents the phase-velocity
of the wave, it is clear that c/n has also the dimensions of velocity.
Therefore v =c/n, or n= c/v. But this ratio of the velocity of light
in a vacuum to its velocity in a medium is defined from Huygen’s
wave-front construction as the index of refraction of the medium.

Hence n in (16) is the index of refraction of the gas through which

the light wave is propagated.

The exponential term in equation (16) is a decay factor that

decreases as (fx -f- gy -f- hz) increases, that is, as the light wave is

propagated through space. Hence as the light wave is propagated
through the gas, its energy is absorbed and its amplitude decreases.

The speed with which the amplitude decreases can be seen to depend
on the factor k which is called the absorption coefficient.

The term (n— jk) is often called the complex refractive index

or the "dynamic” refractive index, but this terminology is somewhat

misleading. This complex refractive index is rather a "doublet” com-

posed of the real refractive index and of the absorption coefficient.

When this "dynamic” refractive index of the medium is known, the

optical properties of the medium are completely determined.
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Relation of Index of Refraction to Frequency

To discover how the frequency of the light affects the absorption
and refraction, we must consider the substitution previously made:

4?rN e
2/m

(n jt) 2
- (K H )

W 2 W 2 -f- Rjw

Since for gases both K and n are very nearly unity, we can replace
K by 1 and extract the square root of both sides. To do this we expand
the right hand side by the binomial theorem, neglecting all terms

after the second. This gives to a high degree of approximation:

2ttN e
2 /m

n—jk= 1 -f -

w 2 w2 -(- Rjw

Separating into real and imaginary parts by multiplying by the

conjugate complex of the denominator, we obtain:

2-7tN(w2
w 2)e 2/m

n— 1 = (17a)
(w 2

w 2) 2 -f- R 2w
2

27rNRwe 2 /m
k (17b)

(w 2
w 2) 2 -f- R 2w

2

These values for the index of refraction and absorption coefficient

indicate how the frequency of the incident light affects the propa-

gation of the wave through the gas. It can be seen that if the frequency
of the light is very small or very large compared with the natural

frequency of the electrons, k approaches zero, and hence the ex-

ponential term in equation (16) approaches a limiting value of unity,
and the amplitude varies little from Xo. If however w is of almost

the same magnitude as w, k becomes large, attaining a maximum value

of 27rNe 2/mRw when w = w. The two are then said to be in res-

onance. The die-away factor is then of great importance, and as the

wave is propagated, its energy and amplitude rapidly decrease.

The value of n in equation (17a) indicates that for values of w

which are very large or very small compared to w, the index of re-

fraction increases as w increases. However in the neighborhood of the
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absorption region where w is of almost the same magnitude as w, the

factor R 2w
2 in the denominator becomes of importance and the index

of refraction decreases rapidly with increasing frequency. When
w = w, n = 1. Since the velocity of the wave is, from equation (16)

c/n, it is clear that the velocity of light varies not only with the
medium but also with the frequency of the light. This variation of

refractive index and hence also of velocity with frequency is what is

meant by dispersion.

The values of k and n in equation (17) indicate a close connection

between absorption and dispersion. If the natural frequency of the

electrons lies in the infra-red or ultra-violet then there is little or no

absorption over the range of the visible spectrum, and the index of

refraction increases with increasing frequency. This is so-called normal

dispersion. If however the electrons have a frequency which falls within

the visible spectrum, then when light of nearly the same frequency as

the natural frequency of the electrons passes through the medium,
absorption takes place, and in the neighborhood of the absorption band

the index of refraction decreases with increasing frequency. This

anomalous behaviour gives rise to the term anomalous dispersion.

It is clear that the expressions for n and k in equation (17) hold

only for the greatly simplified case in which the electrons in the gas
are all characterized by the same frequency and the same damping
factor mR. If there is more than one type of electron present, the index
of refraction and absorption coefficient are given by a summation of
terms similar to those in equation (17).

In conclusion it may be well to indicate the relationship between
the index of refraction and absorption coefficient and the solutions
of the forced oscillator. Since we took as our trial solution for equation
(4):

x = A exp(jwt)
= (a— jb) (cos wt -)- j sin wt)

the real part of x is given by:
x == a cos wt T- b sin wt (18)

where

Xo(w2
w

2)e/m

a = (l 9a )
(w 2

w 2 ) 2 -)- R 2w
2

Xoßwe m

b = (19b)
(w 2

w 2) 2 A- R 2w 2
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If we compare the values of a and b with the values of n-1 and

k in equation (17), we find that:

27rNe

n— 1 = a (20a)
Xo

27rNe

k = b (20b)
Xo

Thus the index of refraction and absorption coefficient are essen-

tially related to the real and imaginary parts of the amplitude of the

solution of equation (4), the equation that gives the motion of the

electron under the impressed force of the light wave. From equation
(18) it can be seen that a is the amplitude of the component of the

motion of the electron in phase with the impressed light wave, while

b is the amplitude of the component out of phase. The component in

phase with the light wave results in an index of refraction different

from unity. The component out of phase causes absorption and the

diminution of the energy and amplitude of the light wave. If we were

to plot the values of a and b against the angular frequency w of the

light wave, we would obtain curves which are similar to curves a

and b in figure I of the article on forced oscillations (A. A. /. S.

Bulletin, December, 1945 ). Graphs of n-1 and k against the frequency
of the light wave take essentially the same form.
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