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THE EDITOR’S PAGE

HIGH SCHOOL WAR COURSES

The "All Out For War” spirit of the day has taken an enthusi-

astic grip on our colleges and transformed their schedules so that we

hardly recognize our own schools. In a war which demands so many
highly trained men it is inevitable that war education should start

back in the high school. The start should be made as soon as possible,
and most high schools, including our own, have been trying to arrange
the most efficient schedule possible for the present needs. In peace time

there is little specialization in high school because all educators re-

cognize certain fundamental courses as the ground work of all future

education. Thus a high school teacher and especially a science teacher

may well be puzzled as to what sacrifices of the normal high school

course should be made, or how additional courses can be fitted into an

already busy schedule. This confusion is not lessened by the flood of

text books and high pressure salesmanship that inevitably accompanies
the opening of anew field. In this uncertainty we who have the re-

sponsibility both to the boys in high school and also to our country,
are fortunate to have a direct communication from the War Depart-
ment, signed by the Assistant Secretaries of the Army and the Navy,
telling us just what it expects. These demands are contained under
five headings. 1) Physical and mental qualifications. 2) Mathematics
and physics. 3) Pre-flight Aeronautics. 4) Physical Training. 5) Mil-

itary Drill. The first of these is merely directive in selecting proper

boys for war courses. The last two are mentioned as "advantages”
and cannot be expected of all schools. Most, but not all, of our

schools will be unable to supply both of them. The other two require-
ments can be taken care of without seriously disturbing our regular
curriculum. Most teachers will agree that the most important of
these is a sound grounding in fundamental mathematics. From the
various manuals and notices circulated by the war department the
conclusion is emphasized that the facility of aviation and other stu-
dents in algebra, geometry and trigonometry is not satisfactory. These
subjects and an elementary course in Aeronautics can be emphasized
in our high schools without sacrificing anything that is fundamental
in oui early training. Ey doing this we are fulfilling the part asked of
us by our Government and at the same time preparing our boys in
the best possible way for their whole life as fighters and as citizens
after the war.

One of the things which puzzles a new-comer in the field of high
sc 00l science teaching is the matter of definition. Science is supposed
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to teach its students clarity of thought and accuracy of expression of

this thought. Yet many definitions, which are supposed to be the very
crystallization of accurate expression, are either evasively inaccurate

or what we are later taught is definitely wrong. For instance, a sat-

urated solution is frequently defined in terms which mean a solution
which has ail of the solute it can hold. Sometimes saving terms are

added, which are difficult for the student to understand and which

really cause more confusion than the true definition would cause. If
the idea of equilibrium is too advanced for students at the time they
learn about solutions, can the idea not be paraphrased in a way that

they can understand it. Thus for example, a saturated solution is one

which has such a quantity of solute in solution that, even if more

solute is present none will dissolve and none will precipitate from the

solution. Such an idea can readily be transfered to the scientific terms

of equilibrium later. If such is not feasible, would it be better to omit

such definitions entirely until a correct and accurate definition can

be understood?
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Presidential Address at Twenty-first Annual Meeting of Ameri

can Association of Jesuit Scientists at Philadelphia, August 17, 1942

CONSIDERATIONS ON THE "OLD” AND SOME "NEW”

THEORIES OF PROBABILITY

By REV. EDWARD C. PHILLIPS

"Probability” has various meanings; e.g., it may designate a qual-
ity of a judgment or opinion, or a vague surmise that something will

happen. We may call the object of these and similar meanings "sub-

jective probability”. There is also a mathematical or scientific meaning
relating to what we may designate as "objective probability”, as when

we say that the probability of a coin falling head-up is one half. This

mathematical probability forms the subject matter of this paper.

All of us, no doubt, are familiar with as much of the theory of
mathematical probability as is contained in a section of the chapter of

Alegbra on permutations and combinations, or, perhaps, in a separate
chapter devoted to Choice and Chance. We could readily answer

many questions about games of dice or about the probability of draw-

ing at random a white ball out of a bag containing a given number
of white, black and red balls, etc. If asked for a mathematical defini-

tion, we would, I suppose, give the classical one ascribed to Laplace
which states that "Probability is the ratio of the number of favorable

cases to the total number of equally likely cases”.

This definition and the rules derived from it for determining the
mathematical probability for various practical cases, is quite sufficient
and correct within a limited field of problems. However, it suffers
from a logical defect, since it seems to define the term "probability”
by another phrase which means the same thing: that is, "equally likely
cases” seems to be tautological for "equally probable cases”. Some
authors go so far as to say that probability is such an elementary idea
as to defy definition. This is not a satisfactory position to take, and
if we are to claim for the theory of probability the standing of a

science, as, for example, we claim for the theory of Hydrodynamics in
Physics, we should be able to give strict definitions of the terms used
as the basis of the science and in its systematic development.

Granting, however, that the definition given above can serve as a

correct one, there remains another defect, namely, that this "classical”
theory is too limited in its application and does not include many of
the practical problems of vital interest to us. It did very well for the
older problems of games of chance to which it was applied with
gieat acumen by many writers during the 18th and 19th centuries; it
does not apply to many of the problems of life insurance, unless we

throw off the strict limitations involved in its definition. And even in
games of chance, the strict classical theory breaks down when we

deal with abnormal cases: for example, in throwing a normal die the
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chances of throwing a three is one sixth, because there are six dif-

ferent faces to the cube and there is equal likelihood of any one of

the faces turning upwards: but suppose the die is biased (intentionally
or accidentally)—where then are the "equally likely” events?

Dissatisfaction with the classical theory has led many modern

writers to seek a logical and wider theory to replace it. I will here con-

sider the views of one such writer, the well-known author on probabil-
ity and statistics, Richard von Mises, Professor of the University of Is-

tanbul. His theory was first proposed in 1919; during the intervening

years he has developed and also defended it on scientific grounds in a

number of works, one of which I would recommend to your reading
and study, even though we cannot agree with his conclusions. I refer

to his Lectures entitled "Probability, Statistics and Truth”, first pub-
lished in 1928; a iater revised edition was translated into English by
J. Neyman, D. Sholl and E. Rabinowitsch, and published in 1939 by
The Macmillan Company.

This theory is based on anew definition and developed from a

strictly a posteriori viewpoint instead of the older a priori one; it has

the advantage of being applicable to a very much wider field of events,

and also escapes the danger of falling into the tautology charged
against the classical definition and theory. Von Mises defines probabil-
ity as the limiting value of the relative frequency of a given event in

an indefinitely long series of associated events. If asked how we know

what that limit is, or even if in a given field of events such a limit

exists, he would reply that we know it only from experience (of our-

selves or others) and that therefore probability is an empirical proper-

ty of events or classes of events. This view does not necessarily imply
that there are no definite natural laws predetermining the course of

"probable” events; just as our dependence on experience for our

knowledge that stones fall to the earth and with a definite accelera-

tion does not imply the denial of deterministic natural causes. Von

Mises, however, does seem to hold that we cannot speak of the determ-

inistic happening of such events: for him everything subject to treat-

ment by the theory or calculations of probability is the result of pure-

ly "statistical laws”; he even goes so far as to exclude the principle
of causality in this field—or at least that is the only way in which I

can understand certain statements of his, as, for example, the follow-

ing concluding paragraph of his book:

"The opinion that statistical theories are temporary ex-

planations as compared with the final deterministic ones,

which alone satisfy the craving of our mind for causality,
is nothing but prejudice. Historically it is understandable;
but it is doomed to disappear with the growth of knowl-

edge.”
I will return briefly to this phdosophical aspect of his work towards

the end of this paper.
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According to von Mises’ definition, probability pertains then only
to certain classes or certain collections of events; before we can de-

termine probabilities we must have a series of repetitive events of in-

definite extent; such a series he calls a "collective”; for example, to

determine the probability of a six turning up in the game of throwing
a die, we must consider an indefinitely large number of throws, and

note as we go along which throws result in a six and which result in

some other number; we then take the ratio of the number of times

six appears to the total number of throws so far made; if this ratio

approaches a definite limit as the number of throws is indefinitely in-

creased, this limit is the probability of a six appearing. Experience
shows in fact that 1 / 6 is the limit of the ratio when an unbiased or a

homogeneous die is thrown repeatedly; if the die is biased the ratio,
and therefore the probability of throwing a six will be something else;
it might be l/2 or it might be 1/20, or some other fraction, accord-

ing to the way the die is biased in favor of or against casting a six.

From this example we can see a first advantage of this theory; it is

serviceable even though there is no a priori way of knowing what is

the probability of casting a six, or any other specified number, with a

biased die—and in fact von Mises seems to say that there is no

a priori way of knowing what is the probability of casting a six even

in the case of an unbiased die—if such a die exists.

A further quality however of the series or collective is necessary
to assure its being a proper object of probability calculations; beside

offering a definite ratio for the relative frequency of each of the sev-

eral attributes of a collective (and there must be at least two attrib-
utes) it is necessary that this ratio remain unchanged by any arbitrary
selection of a sub-series out of the total series; and this quality he
calls its randomness. Thus in the case of tossing a coin, the two attrib-
utes are "heads” and "tails”. If we toss an ordinary coin we get a

series of events each of which is a "head” of a "tail”, and we find
from experience that as the series progresses indefinitely, the ratio of

heads ’ to the total number of tosses approaches one-half; but sup-
pose that we were to take only every third toss, would the ratio still
remain 1 2? If it does not, then the collective does not possess random-
ness and the varying ratio is not a probability ratio. An example of a

non-random series is given by von Mises, as follows: (cf. p. 31)

Imagine, for instance, a road with stones placed on the
footpath to indicate distances, large slabs for whole kilometres
and smaller ones for tenths of a kilometre. If we walk long
enough along this road, noting the stones and calculating the
relative frequency of large and small slabs, the value found in

this way will lie around l:lo. . .
.

The deviations from the value
0.1 will become smaller and smaller with the increase in the num-
ber or stones passed; in other words the relative frequency tends
towards the limiting value 0.1. .
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"This sequence is quite different from that of odd and even

numbers shown by a long series of casting a die. One is "regular”
(the stones) and the other is completely lawless. With the mile-

stones if we start our observations (counting) with a large stone

and then take every other succeeding one, we will find that the
relative frequency of large stones is now 1/5 instead of 1/10.

By other regular selections of stones we could get other values
for the relative frequency—this however is not so with the casts

of a die; no matter what regular selection we make of the ele-

ments the relative frequency remains unaltered.

XOOOOOOOOOX O O O O O O O O O
XOOOOOOOOOX O O O O O O O O O X;

(the ratio is 1/10)
XOOOOXOOOOX O O O O X O O O O X;

(the ratio is 1/ 5)

There are random series in which the ratio or relative frequency
of one attribute approaches zero as its limit: we say that the prob-
ability of this attribute (®r of such an event occurring) is zero; the

probability of the alternative event is then unity. This points to an-

other characteristic difference between the classical theory and the

new theory. In the strict classical theory a probability of zero means

that the event is impossible and cannot occur; whilst unity means

that the event is certain and cannot fail to occur; in the new theory,
however, a probability of zero means that the occurrence of such an

event is relatively very rare; a probability of unity means the event

occurs, relatively speaking, almost always: this difference is founded

in the terms themselves of the two definitions: the old definition says
that probability is the ratio of the number of favorable events to the

total number of equally likely events; and the new definition says that

the probability is the limit to which this ratio, i.e., the relative fre-

quency, approaches as the number of events increases indefinitely. One

is a static definition, the other a dynamic one. And yet in the old

theory we did not hesitate to apply the calculations to infinite series

also, and hence to consider the limit of the varying ratio instead of a

determinate and static ratio implied by the classical definition. For

example, in Philosophy we state that the probability of an orderly and

self-perpetuating complex cosmos (world) arising through chance is

zero; and yet among all the possible results of a random interaction

of vast collocations of matter there are infinitely many "favorable

cases”; to get an actual ratio of two numbers, both numbers must be

finite, which is not the case for possible orderly worlds: however the

greater the number of possible collocations of matter we consider or

select at random, the closer will the ratio of "ordered” collocations to

the totality of collocations approach zero as its limit. Hence the new

theory appears to respond more closely than the older to our actual

mode of argument in the proof for an intelligent Creator.
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If we are to have an art as well as a science of probability, it is

necessary that in addition to a defensible definition, we must build

up a complete or at least an extensive manual of operations which

allow us to solve the various practical problems of human experience
and even of human speculation. The old theory did this to a fair ex-

tent, and we remember that there are rules for the addition of prob-
abilities in some problems, and multiplication in other problems, etc.

Yon Mises, starting with his definition, builds up the theory in a sim-

ilar way; and it would seem that he does so in a simpler and more

complete or at least a more consistent way than the classical theory.
There are only four fundamental operations with collectives which are

required in his theory, just as there are the four fundamental opera-

tions of addition, subtraction, multiplication and division in arith-

metic; from these four operations, all the others, even very complex
ones, are deduced by the proper combinations and sequences.

Let us now consider briefly the philosophical aspects of prob-
ability and von Mises’ reactions to or opinions on them. The author

does not despise the philosophers, but seems to look on them as im-

practical or even as extreme subjectivists inasmuch as they seem to him

to state that the assertion "I presume that these cases are equally
probable” is equivalent to the proposition ''These cases are equally
probable”. This judgment of the subjectivists (but certainly not of all

philosophers) seems to be justified by the statements of some writers,
such as the following: "the probability which we ascribe to a certain

event, or, more correctly to our assertion of its impending occurrence,

depends on the degree of our knowledge; the assumption of equal
chances for several events is the result of our absolute lack of knowl-

edge” (p. 110-111)! I do not think that any "Philosopher” worthy
of the name ever expressed such a view, rather they would say that

where the causes producing certain events present a prima facie indica-

tion of being able to produce a definite number of different results and
there appears no reason to make us believe that these causes favor one

event rather than another, we have no valid reason for not considering
all of the events equally likely, i.e., equally probable, and hence we con-

clude that in the long run each of these events will occur as often as

rne others. This seems to me to be an a priori presentation of prob-
ability as the expected relative frequency of the occurrence of a given
event in a given long series of trials or observations: whereas von Mises
will arrive at the same probability by the a posteriori method in which
the relative frequency (or its limiting value) is directly or indirectly
obtained from experience alone.

This stand is, it seems to me, an exaggerated empiricism which
ultimately denies the existence of any abstract science. However we

must acknowledge that in ordinary actual cases we merely "presume”
that the coin is a normal one, or that the dice we happen to have in
hand are unbiased—and as this presumption may be false, von Mises
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is right in holding that the only way we have of finding out whether

this particular die is an unbiased one is to examine it experimentally.

A final word about the relation of probability and causality. In

von Mises’ view the theory of causality amounts to the explanation of

any given physical event by an accurate description of the forces

which unambiguously predetermine the given event. The Newtonian

Mechanics is cited as the most perfect expression or embodiment of
the principle of causality as applied to physical phenomena. But the
methods used by Newton and throughout the "classical” period of

physical science breaks down, according to von Mises, in a great
variety of physical events: take for example, the path of a ball down

an inclined board in which there are erected a large number of pins at

equal intervals slightly larger than the diameter of the ball; we start

a large number of balls one after the other from the central point at

the top of the board and allow them to roll down to the bottom; now

the balls, instead of following the same path and reaching the bottom

of the board at the same point, take many different paths; in this

case we are asked, how can we use the principle of causality to pre-
dict which path each ball will take? and if the path of each ball is

unambiguously predetermined by physical laws why do the balls, all

supposed to be equal homogeneous spheres, take so many different

paths? We could of course post factum conceive a combination of

forces derived from almost insensible air currents, from slight changes
in the temperature of the balls which are not perfectly homogeneous,
from slightly different degrees of resiliency, of the pins, of slight
tremors produced by passing vehicles, etc., which would determine

these paths: but this is so artificial, so complex and has such an

"ad hoc”
,

as well as a "post hoc”, appearance that it does not satisfy
the mind. The statistical treatment however of this problem accord-

ing to the theory of probability gives as von Mises assures us, a perfect
answer as to the paths that will be followed in the long run, and in

fact, experience has shown that the number of balls falling into each

position at the bottom of the board follows with satisfying accuracy
the theoretical frequency distribution of the normal curve of errors.

Von Mises’ conclusion is that this being so, it is reasonable to discard

the theory of causality and to accept the theory of probability as the

only sufficient and even as the only possible basis of a rational explan-
ation of this and of an ever-growing field of other physical events

known as mass phenomena.
It seems to me that von Mises, like many other scientists, has been

led by the acknowledged success of empiricism in this field to believe

that no other or no deeper explanations are either necessary or possible.
We have, indeed, to concede that the theory of probability has solved

many a problem—in a statistical manner—which our limited knowl-

edge of physical causes and our limited means of multitudinous pre-
cise measurements of extremely small and often hidden quantities pre-
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vent us from solving predeterministically. Let us, therefore, grant
and gladly accept the undeniable usefulness and the remarkable cor-

rectness of statistical methods based on a rational theory of probability,
whilst at the same time we hold fast to the undeniable principles of a

sane philosophy which teaches the existence of natural laws and of the

ineluctable reign of causality throughout the width and the depth of

the universe both in its majestic greatness and its alluring minuteness.

Edward C. Phillips, S.J.
Georgetown University.
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Coefficient Analogues in Differential Equations
of Oscillatory Systems.

Stanley J. Bezuszka, S.J.

In general, the fundamental elements of an oscillatory

mechanical system are its inertia, stiffness and frictional resistance.

These parameters when used in any specific problem are found to be the

coefficients of a second order differential equation and are intimately

connected in the solution. Progressive theoretical and experimental work

on electrical circuits and acoustic resonators has shown the similarity

of these equations with that of the mechanical case, and investigators

have harmonized the group by showing the analogous characteristics and

physical interpretation of the coefficients used. Since the treatment

of this problem has been restricted either to the mechanical case alone,

or to the electrical (with slight if any mention of the acoustical) in

the ordinary sources, very few references can be given where the

analogy has been developed and stressed. This article is an attempt

to coordinate the three systems so that the resemblances will be made

obvious and accessible to those desiring to supplement the subject still

further.

For the mechanical case, we begin with the consideration of a

particle which is attracted toward a fixed point with a force

proportional to the distance from it, and then gradually Impose other

conditions. Thus the equations of motion :

»#+(1/0“) x::0 (1)

1* For a pictorial reference that will involve the three equations
consider a mass attached to a spring and sliding in a wooden groove.
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m fft + r
H §+ */C

M
=o (2»

“|i-+ rM^f- +x/0M= Pe3"t (3)

Eq. 1. Simple harmonic motion with no resistance. Thus force is

proportional to the displacement and we have

P is proportional to x

F= -x/Cir
r ma s m d

2x/dt2

m

Eq. 2. Equation of motion with resistance proportional to velocity

R is proportional to dx/dt
= -r

M
dx/dt

Eq. 3. Particle of mass m and one degree of freedom acted upon

by a periodic force P cos wt
,

a restoring force -x/c^
and a frictional retarding force -rM

x .

The theory of the electrical circuit and its parameters can now be

compared to the mechanical analogue. Prom experimental researches into

the action of a coil of wire inserted in a circuit, we know that the

current does not reach its maximum value instantaneously. Obviously,

inductance then has inertial properties very much similar to those of

mass. Current is defined as the time rate of change of charge, that

is, i = dq/dt ,
and is therefore analogous to velocity. Whereas the

charge, electromotive force and resistance can be compared respectively

to a displacement, mechanical force and the frictional dissipation in a

mechanical system. W& thus have another set of differential equations

whose coefficients, though electrical parameters ( and connected in

series) behave practically the same way as the mechanical elements.

L Rq/G
e

0 (4)

k ——§ -h r
e dq/dt-f—q/Ce

0
«... (5)

andt c

L +Ve
dq/dt

= E (6)
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Eq. 4, A condenser discharging through an inductance coil. A
resistance has been included and the case is inserted

merely for the analogy rather than for any practical use.

Eq. 5. Circuit equation containing a charged condenser, a

resistance factor and an inductance.

Eq. 6. An electric charge q in a circuit containing a resistance,
capacitance, inductance and subject to an impressed force
E cos wt

•

The above sets of equations are quite similar and symmetrical.

there has been (as far as the writer knows) no such

detailed analogy made in the acoustical case for equations (1) and (4).

But there is an equivalent for the other equations and this is best

approximated by the Helmholtz resonator. The Helmholtz resonator is an

enclosure communicating with the external medium through an opening of

small area. The opening may be flat or it may be in the form of a narrow

neck. In both cases it is relatively simple to separate the resonance

elements.

Inside the resonator there is a volume of gas of magnitude V ■which

is alternately compressed and expanded by the movement of the gas in the

opening. It thus provides by analogy the stiffness element of the system.

The gas in the opening moves as a whole and provides the mass or inertia

element. At the opening, there is a radiation of sound into the surrounding

medium leading to the dissipation of acoustic energy and providing the

dissipation element. Now since all these elements will be the

coefficients of the differential equation, we must calculate their

magnitudes.

If the opening has a neck of length 1 small in comparison with

the wave length, and with a cross-sectional area S, the mass of gas

2, It is true that certain of the acoustical parameters are discarded

or set equal to zero in acoustic filter theory, hut the equations here

are usually quadratics and no analogy can be readily seen.



in the opening is

m DV ZZ dSI

where d=. constant mean density of
medium at any point.

This can he written in another form by introducing the quantity g = S/'i

which is called the acoustic conductivity of the opening. We substitute

this into the expression for mass whence the latter becomes

m ~S 2 d/g =tld/s .

To get the expression for the dissipative force, we need to calculate

the amount of acoustical energy that is radiated from a hemispherical

source of sound in a fluid. This reduces to

(S 2wd/W) dy/dt where y=particle displacement
W =wave length.

Finally, we must calculate the stiffness coefficient. For this it is

necessary to calculate the force acting on the area S of the opening.

If the volume V of the resonator is decreased adiabatically by the

amount dV, the excess pressure is

p* —s =(-c2 d)dV/V
where c n velocity of propagation

of the disturbance.

for by definition, since the mass is constant, and(V a nd) 0 and

s s -dV/V . Now dV T. -Sy ,if the displacement producing the volume

change is y. Therefore the force acting on area S is S 2
c

2yd/V ,

Putting S = Y/y and supposing that the resonator is first force free

and then in the following case driven by an external force producing

pressure P, we have

m K dy/dt + f7 “SP

whence since

msld/s K 3 (S 2wd/WO'dy/dt f =. S 2
c

2ydA
we have

(ld/S) d^f/dt2 4" c
2 dY/V = 0 (7)

(ld/s) d^/dt2
-f- (wd/W)dY/dt 4* &c%Y/V -=0 (8)

(ld/S) d2Y/dt2 4- (wd/W)dY/dt 4“ = P ...
(9)
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Eq. 7. Equation of motion with coefficient of friction absent.
An ideal case.

Eq. 8. Equation of motion for force free case.

Eq, 9. A medium in an acoustical system of one degree of
freedom, with an applied force acting, Y is the volume

displacement and S the cross sectional area and V the
volume of the cavity.

Though we have set the impressed force equal to E and so

on in all three cases, yet this has been done to facilitate the

mathematical solution of the equations and the chief interest will

usually center about the real part.

Asa summary of this discussion on the coefficients, the following

table has been prepared. (The subscripts refer to their respective

system, that is, e for electrical, M for mechanical and A for

acoustical.)

Resistance Friction Fluid Resistance

T
e-

E/T r
M

= f
M/u r

A
=PA

E= voltage ■=■ mech. force p- pressure
r

e
=reslstance

=
„ re3istance

r
A= acoustical resistance

I r current M

u velocity U volume current, product
of particle velocity
and area of conduit.

Inductance Mass Inertance

E=(L)dl/dt f„=(m)du/dt — (m/S 2 )dU/dt

S =. area over which the mass

is distributed

M inertance.

Capacitance Compliance Acoustical capacitance

i = fc e )dE/dt f
M =x/CM p =(-c2d) dV/V = Y/C^

x = displacement Y =• volume displacement

The constant of the acoustic capacitance,

spring stiffness is

the reciprocal of the

compliance.
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ABSTRACTS OF PAPERS READ AT THE

TWENTY-FIRST MEETING

RECENT DEVELOPMENTS IN

NAVIGATIONAL INSTRUMENTS

By REV. PAUL A. MCNALLY, S.J.

(Abstract) 1

During the past few decades the traditional type of sextant has

received a number of new forms of instruments partly supplement
it and partly displacing it. The two-fold, purpose of these new inven-

tions is to enable the navigator, whether on sea or in the air, to take

observations of the altitude if a heavenly body without dependence
on a visible horizon. Several forms have been developed using a spirit
level to establish the vertical position of the instrument. Another

form, the Hagner Sextant, uses the principle of the pendulum to

secure the verticallity of a tube carrying at its bottom a ground-
glass plate in the horizontal position upon which small lead pellets are

dropped whilst sighting the celestial object; these pellets make marks

on the plate from which the angle of elevation may be read or cal-
culated.

The most recent instrument, invented at Georgetown (by the
author of this paper), instead of a pendulum uses a steel sphere roll-

ing in a circular runway and thus determining, when it comes to rest,
the division of the circular scale vertically under the center of rota-

tion of the telescope; the sphere is then clamped in position and ver-

tical angle of the celestial object (i.e. the complement of the altitude)
is read off to the nearest 2 minutes of arc by means of a vernier.

A long series of observations made with this instrument, which
is to be covered by a patent already applied for, shows that the accu-

racy of observation is well within the limits required for all practical
navigational purposes.

The question of producing the instrument on a commercial basis
is now being considered by one of the largest manufacturers of air-

planes and aviation instruments.

1 These abstracts are of papers at New York Summer Convention.
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THE NEW RULES FOR THE COMPUTATION OF ACADEMIC

GRADES IN THE REVISED RATIO STUDIORUM

REV. EDWARD C. PHILLIPS, S.J.

(Abstract)

The present rule was indicated by an example, and attention

was called to the main difference between the new rules and those
which had been in force from 193 3 to 1941.

The main change is in the weights assigned to the work of the
first two years in the course for the Licentiate in Philosophy and the
first three years in the Licentiate course in Theology. In the previous
rules, followed up to 1941, each of these years was given only unit

weight; the sum of all the weights for the four years of Theology was

then about 26; and hence in most cases-the degree of success obtained

by the student in his first three years had very little, if any, effect on

the final grade or "Qualitatis approbationis” for the Licentiate. In

fact, in the typical case given as an example in the Acta Romana

(Vol. VII, 193 2, p. 211) the final grade would have been the same

whether the student had earned only the lowest passing grade of 6 or

"probatus” in each of his first three years, or the highest possible
grade of 10, or "Summa cum laude probatus”. Thus the work of a

■whole year had no more influence in the final mark than one of the

'Disciplinae 'auxiliares” such as, c.g., the onc-scmestcr-hour course in

Ascetics or Liturgy.

In the new rules each of the first three years is given a weight
equal to the sum of all the weights of the individual courses of the

year. This has resulted in giving the first three years a combined weight
of 36 out of a totality of 92, or close to 40%, instead of a weight of
3 out of a total weight of 26, or only 12%, according to the old rules.

It should be remembered that the final oral examination (the "De

universa” in Philosophy, or the Theological portion of the ''Ad
Gradum” in Theology) always receives a weight of 50% in both the

old and the new rules.

The rules assigning the weights will be found in the

Appendix, and not in the body, of both the Statuta and Ratio

Studiorum, and hence can be changed by the Society without the

need of any new pontifical legislation or dispensation.



CHEMISTRY

HISTORY OF ATOMIC WEIGHT DETERMINATIONS

REV. GERALD F. HUTCHINSON, S.J.

Part One— Early Work"

John Dalton—the first table of atomic weights.
The eighteen century had scarcely given way to the nineteenth

when the science of chemistry, recently freed from the trammels of

an erroneous phlogiston theory, turned the corner into the broad road

of atomism, on which road it has advanced by leaps and bounds to its

present position in our own day. About the year 1802-3 John Dalton

was engaged upon the work of determining the composition of me-

thane and acetylene. His keen mind recognized quickly that there was

four times as much hydrogen per unit carbon in the first compound
as in the second. He therefore, followed up this discovery with an in-

vestigation of the ratio of the elements in other compounds. Working
with carbonic acid and oxide he found again a simple ratio of the

carbon content of each compound per unit oxygen. His next study
was directed to that set of compounds which every teacher of ele-

mentary chemistry uses nowadays to illustrate the law of multiple
proportion.

IShO Dinitrogen oxide'

NO Nitrogen oxide

N203 Dinitrogen trioxide

NO* Nitrogen dioxide

NAT Dinitrogen tetroxide

N2O-. Dinitrogen pentoxide.
1) 1 his paper was first composed as a seminar at Holy Cross College. The author

is unfortunately unable to give individual references. He has used various
References contained in "Chemical Abstracts”, and gratefully acknowledge
all of them.

2) Other papers on later developments will follow in the Bulletin.

3) The nomenclature of these compounds is taken from the "Report of the Com-
mittee of the International Union of Chemistry for the Reform of Inorganic
Chemical Nomenclature, 1940.”
Cf. Jorissen, Bassett, Damiens, Fichter and Remy.
Journ. Am. Chem. Soc. 6 3 BS9, 1941. or Reprint.

1 hese results were sufficient to convince Dalton that such regularity
could not be due to chance, and he enunciated his now famous law of
multiple proportion. The explanation of this numerical relationship
was to be found in the theory, that combination of the elements took
place between minute homogeneous parts of matter; and in this con-

52



53

elusion, the philosophical hypothesis of the Greek Democritus became

the scientific atomic theory. It is enunciated in the two simple state-

ments,

1—Every element is made up of homogeneous atoms whose weight
is constant.

2Chemical compounds are formed by the union of atoms of dif-

ferent elements in the simplest numerical proportions.
Dalton then set to work on a determination of the relative weights of

these atoms, and it is that work, started by Dalton more than a

hundred years ago and continued to the present day, that we are

about to trace.

Being a pioneer, Dalton found many assumptions necessary, the

most important of which was that the best known compounds have the
simplest formulas. Analyzing water, the only compound of hydrogen
and oxygen, hydrogen peroxide being unknown at the time, and there-

fore having the simplest formula, HO, he found the ratio of the

weights to be 1: 6.5. Analytic methods were in a very undeveloped
state at that time, so it was impossible that his results could be ac-

curate. Yet, to Dalton credit is due for giving us the law of definite

proportion, the atomic theory and the first set of atomic weights.
The speed with which Dalton’s atomic theory took hold of the

scientists of the time is shown by the fact that, in the year 1 805,

only a couple of years after the work of Dalton, Gay-Lussac pub-
lished his law of combining volumes. Chemical reactions between gases
take place in simple volumetric ratios, and when contraction occurs,

the dimunition in volume stands in simple ration to the volumes of
the original gases. Since chemical reactions occur between simple mul-

tiples of combining weights, and since the volume of combining gases
also stand in simple ratios, it follows that the weights of equivalent
volumes stand in simple ratios to combining weights. There were how-

ever, difficulties to be overcome before these relations could be used
for atomic weight determinations.

N+o=No Nitrogen oxide.

The volume of NO should be half the combining volumes of nitrogen
and oxygen. But actually it was equal to the combining volumes.

In 1811, Avagadro came forward with the solution. He said that

equal volumes of ALL gases contain the same number of MOLE-
CULES, under the same conditions of temperature and pressure. There

is no distinction between elementary and compound gases. There is

for the first time the distinction between atoms and molecules. He

pointed out that any convenient number of atoms may be assumed

to be in the molecule, but two is the maximum number usually re-

quired. The anomaly above is now easily explained.
Ns+o--=2 NO.
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Unfortunate, indeed, was it for chemistry, that Avagadro was entirely

ignored until his countryman, Cannizzaro, brought him to the fore

at the Congress of Chemists at Karlsruhe in 18 60.

PROUT BERZELIUS AND STAS.

Atomic weight determinations received a great stimulus in the

year 1815, when Prout brought forth his famous hypothesis. Noting
that most atomic weights were nearly whole numbers, he suggested,
that if the determinations were made accurate enough they would be

found to be exactly whole numbers in every case, and thus exact mul-

tiples of the atomic weight of hydrogen. The extreme of the theory
was, that all elements were compounds of hydrogen atoms, and Prout

did not hesitate to go the limit.

Two men in particular met the challenge, Berzelius and Stas.

Atomic weight determinations had by this time resolved them-

selves into two problems, I—the1 —the determination of the combining
ratios, and 2—the determination of the numerical ratio of the atoms

concerned in the molecule. Most of the work to date had been done

on the first problem, the second being taken care of by assumptions,
usually arbitrary in nature. Berzelius realized the hopeless arbitrariness

of the assumptions of Dalton, especially that the best known com-

pounds have the simplest formulas. He therefore, looked for other

criteria, in order to determine the number of atoms in the molecule.

Gay-Lussac’s law of combining volumes, the weight of equal volumes
of elemental gases are proportional to their atomic weights, provided
an excellent standard for the elemental gases. Its application, however,
to compound gases was not clear to Berzelius. If the views of Avag-
adro had received their due from the scientists of the day, the prog-
ress of chemistry might have been advanced by several decades, but
"IFS” have no place in history.

Berzelius had to find another criterion for the numerical pro-

portion of the atoms in the molecule. He was always an ardent ad-
mirer and student of Lavoisier, and now the French influence came

into play. He took as his standard the varying quantities of oxygen
that unite with the various elements. A typical example shows the
cleverness and originality of his reasoning.

3 PbS + BHNOr-» 3PbSO. + 4H.0 +8 NO

He formed lead sulphate from lead sulphide. He noticed that there
was an excess of neither lead nor sulphur in the supernatant liquid,
and therefore, concluded that the ration of lead to sulphur was the
same in both compounds. Lead sulphate was considered a compound
1 What follows is the reasoning of Berzelius.

of lead oxide and sulphur trioxide, which at the same time was thought
to be sulphuric acid. The amount of oxygen in lead oxide was known,
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and therefore, the balance of it, or three times that amount must be

in the sulphur trioxidc. The number of atoms of oxygen, therefore,
in sulphur trioxide, must be three, or some multiple of three. In the

absence of any good reason for postulating a larger number, Berzelius

assumed the number was three. The atomic weight of oxygen was

fixed by its density, and therefore the atomic weight of sulphur was 3 2.

Berzelius next argued that, IF the atomic weight of lead is the

weight of that element that will unite with 16 units of oxygen, the

same would also be true for Ba, Ca and other similiar elements. It is

obvious that the reasoning of Berzelius was far superior to the reason-

ing of Dalton, but even yet it is not free from assumptions. Follow-

ing the law of Gay-Lussac, he noticed that two volumes of hydrogen
united with one volume of oxygen to give one volume of water, and

therefore wrote for the first time, the formula of water, FLO,

ratio, 2/1.

Berzelius was, perhaps, the first to realize that atomic weights,
exactly known, were a necessity for the new chemistry. He therefore,
set himself the task of determining the combining weights with the

greatest possible accuracy. Within the space of little more than ten

years, he accomplished this for 43 elements, by the preparation, pur-
ification and analysis of over 2000 compounds. This feat he accom-

plished with scarcely nacre than the advantages of a modern kitchen.

In most cases he had to make his own starting materials, and more

often than not devise his own methods. Thus quantitative analysis
saw great progress during his work. His results speak for themselves,
his values comparing as favorable with the values of today as was

possible at his time.

In 1819, Dulong and Petit called attention to the remarkable

relationship between atomic weights and specific heats. They showed

that the heat capacity for all solid elements was the same. Therefore

the product of the specific heat and the atomic weight gave a constant

value. Today, the mere mention of the specific heats to the student of

physical chemistry brings to mind an almost infinite series of compli-
cations, so that this method is dependent on too many factors to serve

as an independent means of atomic weight determinations. At the

time it was proposed it offered another measurable physical property,
free from the assumptions found in the reasoning of Dalton and Ber-

zelius, which might serve as a method of determining atomic weights,
and therefore deserves a place in our history.

The law of isomorphism published by Mitscherlich in 1818, may

be summarily stated in his own words.

"The same number of atoms, combined in the same manner, pro-

duce the same crystalline form; the crystalline form is independent
of the nature of the atoms, and dependent solely on their num-
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ber and mode of combination. This law can be used only in con-

junction with other methods to ratify atomic weights.”
If we take two compounds,

KsSCh & KaSeCh

and assume

1) that the first has one atom of sulphur
2) that each has the same number of atoms

3) that the atomic weight of sulphur is 32.

then: 32 : At. Wt. of Se :: the wet. of any arbitrary amt. of K»SO:

the wt. of the same amt. of KaSeOc

or in a concrete case,

32: X : : 18.39:45.34.

X 79.00

However, the method most extensively used, and to which our

present values are largely due, is the chemical method, based upon

gravimetric analysis and first attempted by Dalton and remarkably
improved by Berzelius.

The hypothesis of Prout, daring and original as it was, aroused
the admiration as well as the ire of scientific men. One of the most

anxious for the welfare of the theory was Jean Servais Stas, a Belgian
chemist. One method of proving conclusively the truth or falsehood

of Prout was an accurate determination of atomic weights reaching
the acme of analytic perfection. To this work then, Stas devoted his

life. His work was that of a genius, and so accurate were his values
that it required another genius, T. W. Richards, to point out their

inaccuracy. It is worthy of note that his ultimate conclusion, that

Prout’s hypothesis is absolutely untenable, was regarded as the last
word by his contemporaries. Since then, however, the discovery of

isotopes and particularly the more recent discovery of the isotope of
hydrogen, has thrown the question of Prout wide open to discussion

again.

Nevertheless, all the previous work on atomic weights was sur-

passed by the labors of Stas. He refined the process of quantitative
transformations to a degree never before equalled, worked with ma-

terials highly purified, employed exceptional weights of substances,
often several hundred

grams, made his weighings on a balance of un-

precedented precision, and exercised extraordinary care in manipula-
tion. Indeed, so determined was he to avoid the last trace of error, that
some of his precautions were illusory as far as final results were con-

cerned.

Stas, was, perhaps, the first to fully appreciate the value of silver
in atomic weight determinations. This value is due to the slight solu-
bility of the silver halides, especially the chloride, and to the fact that
these salts can be readily prepared in a high state of purity. If the
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compound, containing the element whose atomic weight is to be de-
termined, is thoroughly purified and then decomposed by silver, the
atomic weight can be readily calculated. Oxygen, with the atomic
weight 16, was Stas’ standard. Therefore, that the atomic weights
might be determined by the use of silver and then referred to oxygen,
the silver-oxygen ratio was of extreme importance. It is unfortunate
that silver oxide is not sufficiently stable to serve in determining this
ratio. An indirect method must be used. The method of Stas was as

follows, and illustrates the determination of the atomic weight of
lithium, and the ratio of silver to oxygen.

1) By decomposing LiCICT, he obtained the ratio,
3 O

LiCl

2) By the displacement of Li, from LiCl by Ag he obtained
the ratios,

LiCl LiCl

Ag AgCl
3) By multiplication,

3 O LiCl 3 O

LilCl Ag Ag
Three things are worthy of note, I—the choice of the starting

materials, 2—the preparation of pure silver, 3—the purification of
the LiCl. This work is so closely connected with the work of Richards,
that a comparative study of the two men’s work will be most advan-

tageous. This will be given in a separate paper in a later issue of the

BULLETIN. It will be pointed out that Richards proved several er-

rors in the work of Stas which vitiated his results. We should remem-

ber, though, that Stas came before Richards, and therefore did the

pioneer work necessary for the wonderful work of Richards. It is
history that before any work can reach the peak of perfection, a cer-

tain amount of spade work must be done. Very often this preparatory
process requires a genius just as much as the perfect work which fol-
lows. Stas a genius cleared the way for Richards another genius. Let

us give each the credit due him.

(To be continued)



NEWS ITEMS

BOSTON COLLEGE

Biology Department

The regular weekly seminar on medico-moral topics is being con-

ducted again this year. A referendum concerning birth control was

on the ballot for voters of Massachusetts this year. Just before election

day this subject was discussed in detail during a regular meeting. On

November 19th, the Rhythm theory was the topic. Other topics to be

discussed during the year are, Sterilization, Therapeutic abortion, Ec-

topic Gestation, Euthanasia and Eugenics.

Chemistry Department

The chemistry department of Boston College was approved by
the American Chemical Society at the Buffalo meeting last September.

There are over seven hundred students registered in the various

chemistry courses at this year.

Forty students are engaged in an evening course in General Ap-
plied Chemistry, sponsored by the E. S. M. W. T.

Forty-eight students from St. Clement’s Junior Seminary are do-

ing their Chemistry laboratory work here Saturday mornings.

CANISIUS COLLEGE

Biology Department

The Mendel Club Lecture Program
1942-1943

September 2 Bth. Maxwell L. Lockie, M.D., Professor of Thera-
peutics, School of Medicine, University of Buffalo, "Arthritis—lts His-

tory and Treatment.”

October 12th. Herman E. Bozer, M.D., Associate Professor of

Otolaryngology, School of Medicine, University of Buffalo, "The Uses

of the Bronchioscope.” Illustrated.

November 2nd. William T. Clark, M.D., Superintendent of
Meyer Memorial Hospital, Professor of Hygiene and Public Health,
School of Medicine, University of Buffalo, "Epidemiology.”

November 23rd. Margaret Warwick, M.D., Pathologist, Sis-
ters of Charity Hospital, Instructor of Pathology, School of Medicine,
University of Buffalo, Tumors—General Cause and Behavior.”
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Decembei 14th. To be announced. Alumni Banquet during
Christmas Holidays, date to be announced.

January 4th. James P. Kinney, M.D., Chief of Department of
Anaesthesia, Sisters of Charity Hospital, "Principles of Anaesthesia.”

February Ist. Charles F. Becker, M.D., Instructor of Pa-
thology, School of Medicine, University of Buffalo, "Poison Gases.”

February 22nd. Sister M. Aloysia, St. Mary’s School for the
Deaf, "Problems in Contacting the Mind of a Child—Born Deaf,
Dumb, and Blind.”

March Ist. Annual Banquet.

March 22nd. Leon J. Gauchat, D.D.S., Assistant Professor
of Principles of Practice School of Dentistry, University of Buffalo,
"Dentistry—Your Teeth—The War.” Illustrated.

April 12th. Paul J. Rutecki, M.D., Medical Examiner, Erie
County, "AFedico-Eegal Aspects of Post Mortem Examinations.”

May 10th. Hoyt E. De Kleine, M.D., Associate Surgeon—
Buffalo General Hospital, Plastic Surgeon, Millard Fillmore Hospital,
"Plastic Surgery.”

May 24th. To be announced.

Chemistry Department
Dr. James H. Crowdle, Professor of Chemistry at Canisius Col-

lege, was appointed general gas protection officer and head of the
decontamination organization for the City of Buffalo on Saturday,
October 24, 1942.

J he appointment was made by Mayor Joseph J. Kelly, Director
of the Buffalo office of civilian protection.

Mayor Kelly also appointed Mr. Austin V. Signeur, Assistant Pro-
fessor of Chemistry at the College, deputy gas protection officer and
deputy head of the local decontamination organization. Dr. Crowdle
and Mr. Signeur will be assigned two places on the main panel-table
of the Buffalo Control center, from which all agencies and functions
of the Committee would be directed in case of a war-time emergency.

They will conduct the simulated gas raids and work out plans
for the decontamination of civilian areas in case of a real raid.

The Western New York Section of the American Chemical So-

ciety has selected Thursday, January 21, 1943, for its meeting at

Canisius College. Lieutenant James R. Barrett, who received his Master

of Science degree from Canisius in June 1942, and who is the ballistic

expert at the laboratory of the Buffalo Police Department, has been
selected by Lather T. Joseph Brown, S.J., Chairman of the Department
of Chemistry, to give the dinner address at the meeting. Lieutenant

Barrett will talk on scientific crime detection in the City of Buffalo.
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Chemistry Department Canisius College Alumni

Chemical Society Program for 1942-1943

Monday, October 5. S. M. Lazarus, National Aniline & Chem-

ical Cos., "Patent Chemistry.”
Monday, November 2. Loren Smith, Curtiss-Wright Corp.,

"Chemistry in Aircraft Production.”

Monday, December 7. Emmette F. Izard, E. I. du Pont de

Nemours & Cos., "Chemical Warfare.”

Monday, February 1. Raymond Bott, Will Corporation. "Elec-

trical Instruments for Chemical Analysis.”
Monday, March 1. F. L. Koethen, American Lubricants, Inc.,

"The Flistorical Development of the Niagara Frontier.”

Monday, April 12. James O. Ralls, University of Buffalo Med-

ical School, "Recent Advances in Biochemistry.”
Monday, May 3. William R. Sheridan, Dunlop Tire & Rub-

ber Corp., "Synthetic Rubber.”

All Meetings in Horan-O’Donnell Science Building, Canisius Col-

lege, 8:00 P.M.

HOLY CROSS

Chemistry Department
Departmental Research Program— 1942-1943

Graduate Assistants:

Chromatographic Adsorption with special emphasis on problems
in the department.
Mr. Robert M. Dee Directed by Prof. Charest

A Colorimetric Analysis for Hydroxylamine.
Mr. Bernard J. Digris Directed by Fr. Fiekers
Refractive Indexes of the Picrates.

Mr. John A. Green Directed by Prof. Tansey
The Rearrangement of Methyl Aniline.

Mr. John P. Hardiman Directed by Prof. Casey
Relative Rates of the Formation of Phenyl-substituted Quater-
nary Ammonium Compounds.
Mr. Michael F. Kilty Directed by Prof. Tansey
Formation of Diphenylamines in the Gattermann Reaction.
Mr. James M. Owens Directed by Prof. Baril

Senior Laboratory Theses:
Getting Agents in Volumetric Analyses.
Mr. Robert R. Kiely Directed by Prof. Charest
The Stripping Action of Various Reagents on Zinc Covered Wire.
Mr. Charles V . Chagnon Directed by Prof. Charest
Theory and Technique of Superheated Steam Distillation with
Application to the Separation of Benzene Sulfonyl Chloride and
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Dimethyl Aniline.

Mr. Charles A. Polachi Directed by Prof. Casey
Two Component Phase Diagram: Diphenylamine-Benzoin.
Mr. Michael D. Riordan Directed by Prof. Tansey
Catalytic Hydrogenation.
Mr. William P. Whelan Directed by Prof. Casey
Condensation: Alkyl Halides, Aryl Amines.

Mr. Charles J, McNulty Directed by Fr. Fiekers

Acetone and other Solvents of Crystallization.
Mr. Peter P. Salatiello Directed by Prof. Baril

Azeotropic Mixtures in the Chloroform Synthesis.
Mr. John P. Loughman Directed by Prof. Baril

Seminar Program

(Winter Term 1942-1943)
November 6. History of Chemistry.

Father Theodor Wulf, S.J., and his Theory of General Radio-

activity.
Mr. Robert M. Dee, B.S. ’42 (Graduate Assistant)

Directed by Fr. Fiekers

November 13. Organic Chemistry. The Vitamins.

Mr. Andrew S. Carten, (Senior A.8.) Directed by Prof. Baril.

November 20. Inorganic Analysis.

Wetting Agents in Volumetric Analysis
Mr. Robert R. Kiely, (Senior 8.5.)
A Study of the Stripping Action of Various Reagents on Zinc

Covered Wire.

Mr. Charles W. Chagnon, (Senior 8.5.)
Both directed by Prof. Charest

November 27. Physical Chemistry.

The Two Component Phase Diagram Diphenylamine-Benzoin.
Mr. Michael D. Riordan, (Senior 8.5.) Directed by Prof. Tansey

December 4. Organic Chemistry.

The Theory and Technique of Steam Distillation

Mr. Charles A. Polachi, (Senior 8.5.)
Catalytic Hydrogenation

Mr. William P. Whelan, (Senior A.8.)
Both directed by Prof. Casey

December 11. Inorganic Chemistry.

Decontamination in Chemical Warfare

Mr. J. William Quinn, (Senior A.8.)

Organic Chemistry

Alkyl Halide Aryl Amine Condensation

Mr. Charles J. McNulty, (Senior 8.5.)
Both directed by Fr. Fiekers
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December 18. Organic Chemistry.

Organic Solvent Analogies to Water of Hydration
Mr. Peter P. Salatiello, (Senior 8.5.)

Azeotropic Mixtures in the Chloroform Synthesis
Mr. John P. Loughman, (Senior 8.5.)

Both directed by Prof. Baril

January 8. Analytic Chemistry.

Devising New Colorimetric Analyses
Mr. Bernard J. Digris, B.S. ’42, (Graduate Assistant)

Directed by Fr. Fiekers

January 15. Physical Chemistry.

Refractive Indices of Solids

Mr. John A. Green, B.S. ’42, (Graduate Assistant)
Directed by Prof. Tansey

January 22. Organic Chemistry.

Theory of Nitrogen Rearrangements
Mr. John P. Hardiman, B.S. ’42, (Graduate Assistant)

Directed by Prof. Casey

January 29. Physical Chemistry.

Comparative Condensation Rates

Alkyl Halides Aromatic Amines
Mr. Michael F. Kilty, A.B. ’42, (Graduate Assistant)

Directed by Prof. Tansey

February 5. Organic Chemistry.

Recent Interpretations of the Sandmeyer and

Gattermann Reactions

Mr. James M. Owens, B.S. ’42, (Graduate Assistant)
Directed by Prof. Baril

ST. PETER'S COLLEGE

Chemistry Department

On Wednesday, October 14, the Students Chemists’ club had
their first meeting of the first semester. The subject of the lecture was

Chemical Warfare.” The lecturer was Dr. Claude Schwob, of the
chemistry department of the college.

St. Peter s College Chemists’ Club had their regular monthly
meeting at the college, in the science building, in the chemistry
lecture-hall on November 12th. The lecture was delivered by C. M.
Gooding, Ph.D., Chief Chemist of the Best Foods Corporation, Ba-
yonne, N.J. The subject of the lecture: "Researches on Vegetable Oils
and their Application in Industry.” After the lecture, a long discussion
was held.

At the next meeting of the St. Peter’s Alumni Chemists’ Club,
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on December 17, the lecture will be presented by Rev. Richard B.

Schmitt, S.J., D.Sc.; the topic will be: "Finger-prints of Crystals.”

CHEVERUS HIGH SCHOOL

A class in Elementary Aeronautics has been organized by Fr.

Hutchinson, S.J. The class meets after the regular school hours, and

therefore, due to the large number of boys who must work during the

afternoons, the class is small, numbering fifteen. Several of these are

veteran model plane builders, and so the class is well supplied with

demonstration material. The text books used are "Elements of Aero-

nautics”, Pope-Otis and "Mathematics in Aviation” Osteyee, one of

the Air Education Series.

Several articles have been written to show the value of toy
balloons in lecture demonstrations.' In the beginning of the school

year, when something startling is needed to get attention and is really
expected by the students, these balloons can be used to demonstrate

the following points all in one demonstration. By fastening a balloon

over the mouth of a test tube containing zinc and a mineral acid the

balloon is blown up with hydrogen. This demonstrates, 1) the gener-
ation of the gas, 2) heat is given off by the reaction, 3) the reaction

proceeds in spite of the pressure caused, 4) diffusion of gases, since

ordinary cheap balloons can be blown up to a certain point only. If
the balloon is then taken off from the test tube and tied around the

neck and released it will rise to the ceiling thus demonstrating 5) that

the gas is lighter than air. By touching a match to it while at the

ceiling it is safe to demonstrate 6) its explosive property. By stopper-

ing the test tube with a rubber stopper and small glass tube the hydro-
gen may be burned thus demonstrating 7) the difference between
the conditions for explosion and quiet burning.
1. Mitchell, Journ. Chem. Ed. 18 6 June 1941.

Walton ibidem 8 303 X 193 1.
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