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Father Francis A. Tondorf, S.J., Seismologist
REV. JOSEPH P. MERRICK, S.J.

Friday, November 29, 1929, Fr. Francis A. Tondorf, S.J., of George-
town University, died of a heart attack. It was an appropriate death

for this grand old man of American seismology. During a laborious
life he had sketched with cunning and accuracy the heart attacks,
the splittings and the rendings of mother earth; in death there was

a tearing of the cables and the clay, a rending of the heart and then

a silence.

Born in Boston, July 17, 1870, he entered the Society of Jesus from

that city. Besides the usual course in the Society he made special
studies in physiology at Johns Hopkins University, Baltimore, and

in astronomy and physics at Georgetown under the eminent director,

Fr. John G. Hagen, S.J., now in charge of the Vatican observatory,
llis early teaching was chiefly at Loyola College, Baltimore, but in

1903 he went to Georgetown. At his death he might have claimed
that he antedated any other member of the faculty in years of con-

tinuous service at the University. He might also have boasted, were

he given to boasting, that he antedated others in years of toil. For

he was accustomed to rise about two or three in the morning, finish

his office, say his Mass, then investigate his instruments and get in

plenty of study before breakfast. As professor of geology and physi-
ology, he had quite enough to keep him occupied.

Yet it was in the highly specialized field of seismology that he

acquired international repute. From 1911, when he first set up his

instruments, until his announcement of the Tokyo earthquake in

1923, his accuracy and skill in interpreting records had gradually won



4

recognition of his work among the specialists. But when the tele-

graphic report confirmed his prediction that the Japan earthquake
“was a whopper,” he achieved popular and instant applause. What

had been the secret of a few became a commonplace among the many,
and with his constant reports of tremors to the press, he became the

greatest publicity agent seismology has ever had.

He checked up on his instruments many times daily and his monthly
reports on earthquakes which he sent to observatories all over the

world were held in very high regard. He made science live both to the
theorist in earthquakes and to those who are merely potential victims.

It was his lifelong desire to discover a method by which earth-

quakes could be foretold in time to give warning to the inhabitants

of the threatened area. He confessed that such dependable forecast-

ing was many years away, but he held tenaciously to the belief that

scientific research would eventually reach that goal.

One of the very last scientific accomplishments of Fr. Tondorf, and

one for which he received governmental commendation, was the very

accurate report he submitted to the United State Coast and Geodetic

Survey on the earthquake shocks of November 18. He reported that

the center of this disturbance had been in the Atlantic Ocean some-

where southeast of the Newfoundland coast.

Other reports had varied, some estimating the shocks to have cen-

tered at the mouth of the St. Lawrence River, and others farther south.

But Fr. Tondorf’s information was as nearly accurate as is possible
to get, government seismologists have announced. The reports of

cable ships repairing the broken lines at the scene of the disturbance

confirm his computations most exactly.

Fr. Tondorf has been described as the father of seismology in the

Jesuit colleges and universities in the United States. There are now

Jesuit Seismological Observatories in Washington, New York, New

Orleans, St. Louis, Denver, Buffalo, Santa Clara, Spokane, Los An-

geles, Chicago, Cleveland, Weston and other cities.

Fr. Tondorf was a member of many scientific societies, among them

the American Association for the Advancement of Science, the Geo-

physical Union, the Washington Philosophical Society, the Seismo-

logical Society of America, and the Royal Astronomical Society of

Great Britain. His membership in the last organization recalls the

fact that he had at one time devoted himself seriously to the study

of astronomy, and that during this period he had given to Fr. Hagen,

S.J., valuable assistance in his study of the variable stars.

He was buried with a low requiem Mass as is customary for a Jesuit,
but the Right Reverend Bishop John McNamara of Baltimore said

the Mass and gave the absolution and in the sanctuary was the Apos-
tolic Delegate, Most Reverend Pietro Fumasoni-Biondi, and many

illustrious prelates and clergy of high rank, while the little chapel
was crowded with students and professional men. The great will miss

him but not as much as the little children who used to clean his office

and take care of his effects. For he also was a little child, a little

child with a heart like Christ’s.
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THE CHEMISTRY LIBRARY, LOYOLA COLLECT

The Chemistry Library
REV. R. B. SCHMITT, S.J.

“Measured in human labor a library represents more toil in the

gathering of information than the pyramids in the cutting and piling
up of stone. The riches in the vaults of the Bank of England are

paltry as compared with the treasures stored in a great library. The

bank vault is protected with bolts and locks and armed guards lest

someone purloin a single gold piece; the library doors open wide and

over its portals is inscribed: Whosoever will, let him come and take

of the wisdom of life freely.” This quotation is from Dr. E. Emmet

Reid, of Johns Hopkins University, in “Introduction to Organic Re-

search.”

All research laboratories must necessarily have their libraries and

they must be readily accessible. Should colleges that are doing un-

dergraduate work only have a chemistry library? We are of the

opinion that a departmental library is necessary in order to stimulate

the students, to encoui’age general scientific knowledge, to arouse

keener interest in the work of the regular classes and to develop
initiative, self-reliance and leadership.
It is one of the essential functions of a scientific course in college

to show the student where to find the information he needs and



wants. The time given to lectures is not sufficient to cover all the

matter assigned, and so the library can supplement the lecture course.

The work in the laboratory is often merely mechanical and a matter of

routine. Students are prone to do too much work with their hands

and too little with their heads; a library of well selected books con-

veniently located with respect to the laboratory will help to remove

this undesirable state of affairs. There is scarcely anything more

important in the pursuit of a science than a familiarity with and an

appreciation of the work of the masters in that science. Surely, this
cannot be acquired without adequate library facilities.

The College Chemistry Library will stimulate the better students
to do research in the post-graduate courses in universities or in com-

mercial laboratories. Here they are taught how to consult the vast

literature. Knowing how to find facts in a library is as important
as knowing the facts themselves. There are at the present time no

less than eighty-eight periodicals in chemistry published and recog-

nized by research chemists. This literature gives the information of

the immense amount of research that is being done in all parts of the

world.

Finally, the successful operation of the seminar or chemists club

is assured and made easy with an adequate library.

On November 6th, 1929, at Loyola College, Baltimore, Md., we

opened anew chemistry library adjoining the organic laboratory. In

the sectional bookcases we have at present about seven hundred vol-

umes and there are twenty-two periodicals of current chemical litera-

ture in the magazine rack. The books are catalogued in a suitable

Globe-Vernicke steel file; a duplicate copy of the library card will

be found in the principal library of the college. The sections of the

library include: general literature, theoretical and physical chem-

istry, laboratory methods, qualitative and quantitative analysis, inor-

ganic chemistry, organic chemistry and crystallography.

Letters of commendation were received from the following pro-

fessors of Johns Hopkins University: Dr. William M. Thornton, Jr.,

Associate Professor of Chemistry; Dr. K. F. Herzfeld, Professor of

Physics; Dr. F. O. Rice, Associate Professor of Chemistry, and Dr.

Neil Gordon, Editor of Chemical Education.

We are also pleased to announce that a Physics-Biology Library

has been established here at Loyola College.

A Filing System
REV. JOHN A. FRISCH, S.J.

The filing of pamphlets, such as the Bulletin of the U. S. Dept, of

Agriculture, presents several difficulties. They will not stand up by

themselves and when stacked together they are hard to get out singly
but worst of all the titles are not visible.

The following method was garnered from “Science” years ago. It

6
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works best when the pamphlets are all on one subject or specialty,
but it will do for a general collection.

Obtain cloth-covered cardboard cases open only at the back and

not larger than 12x8x2% inches. The pamphlets are filed in these

cases not by their titles, but under the author’s name. Therefore

on the outside of the cases put a label with a large initial letter at

the top and below the abbreviations

indicating the names of the authors

whose papers are filed in that

case, e. g.

If one author’s papers are sufficiently numerous to require one or

more complete cases, their fronts

bear this initial and name and

an indication of the years cov-

ered by the papers, included, e.g.

But to facilitate the location of particular pamphlets a subject in-

dex must be maintained. The card will carry only the title and the

author’s name e.g. Flytraps and Their Operation—F. C. Bishopp.

The author’s name tells you in what case it is located.

This method makes for ease in filing and ease in locating.

The Determination of Carbon Dioxide in Barium Carbonate

REV. RICHARD B. SCHMITT, S.J.

The following experiment for the class in Quantitative Analysis is

useful to teach the students technique in setting up apparatus and
careful manipulation of control:

1. Determine the water present by drying a one gram sample of

barium carbonate in a porcelain crucible for one hour at 115° C.

2. Apparatus. This consists of a decomposition flask of 250-300 cc

capacity, provided with an upright condenser and connected (to the

right) with a Drexel bottle; this is connected to a drying tower, con-

taining concentrated sulphuric acid and calcium chloride, respectively.
Following this are three U tubes, c and and and e; c is filled with soda-

lime; and has soda-lime with the right arm one-third filled with cal-

cium chloride to absorb the water set free by the action of carbon

dioxide on the alkaline hydroxides; the e tube is a protection tube

whose left arm is filled with calcium chloride and whose right arm

contains soda-lime. This last tube is connected to a Mariotte bottle

(for regulating the flow), which in turn goes to the suction pump.
The reaction flask is provided with a condenser and with a small drop-
ping funnel, containing dilute hydrochloric acid. Finally, connecting
the dropping funnel is a purifying tower containing soda-lime. Under

the flask is a Bunsen burner.

The calcium chloride is made neutral prior to use by placing the

granular salt of commerce in a large tower and connecting it to a
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supply of carbon dioxide gas. After passing a rapid gas stream for

one or two minutes, the exit tube is closed for twelve hours; where-

upon the excess carbon dioxide is expelled by drawing through the

apparatus purified and dried air for twenty minutes. The soda-lime

should be twelve mesh.

3. Procedure. Weigh out 0.5 gram of air dried barium carbonate
into the dry flask and wet the powder with 25 cc of freshly boiled
water. Connect up the apparatus and draw a slow steady stream of

air through the entire train to free it from carbon dioxide. At the

end of half an hour, disconnect the U tubes, c and and, and place them

in the balance case, then close the outlets which have been opened by
the removal of the U tubes. Fill the dropping funnel nearly full with

dilute hydrochloric acid (1:3) and insert the stopper immediately.
Now weigh the tubes c and and and again join them in place. Start

the suction with a small flow and open the stop-cock on the dropping
funnel until there is a gentle stream of acid on the carbonate. Regu-
late the gas current so that three or four bubbles per second of gas

pass through. When all the acid has been added, and the water mean-

while turned on through the condenser, heat the flask gently to boil-

ing and maintain the ebullition for five minutes. Remove the heat

and allow a current of air to pass through for half an hour (2 or 3

bubbles per second). Then increase the air current to 3 or 4 bubbles

per second and continue for another half hour. Detach the U tubes

c and and, stopper them and place them in the balance case for twenty
minutes to cool. Then weigh the tubes and record the gain in weight

as carbon dioxide.

4. References. Treadwell-Hall, Vol. 11, p. 333 (1924); Gooch and

Whitfield: Geological Survey, Bull. 47, p. 15-17; Hillebrand: Geologi-

cal Survey, Bull. 700, p. 217-219, and p. 266; Knorr: A.0.A.C., Official

and Tentative Methods, p. 277-278; Engelder: Quantitative Analysis,

p. 113 (1929).

5. Notes. In case the materials contain sulphides, it is necessary

to interpose an absorbent for hydrogen sulphide. For this purpose

copper sulphate dehydrated at 150-160° C., may be placed into the

drying tower just below the calcium chloride and separated from it

by a layer of asbestos.

Every stratum of dry absorbent should be both preceded and fol-

lowed by asbestos plugs.

See that every connection is a perfect mechanical fit, and do not

try to compensate for leaks by coating the joints with paraffin, shcdlac,

collodion or any such material. Use soft elastic rubber tubing and

stoppers. On the ground glass connections use a trace of lubriseal.

If the U tube c has a height of about 10 cm and a diameter of

1.2 cm, it will need refilling after every second analysis. The U tube

and will last much longer.

The determination of carbon dioxide by gain of weight is almost

universally applicable, and when once the process has been mastered,

it is capable of yielding accurate results.
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The Laboratory in the Service of the Community
REV. FRANCIS W. POWER, S.J.

It may be of interest, especially to those in charge of the material

side of administration, to record a few results obtained at Weston

and at Boston College.

Four brands of washing powers have been examined in the Weston

laboratory, with the following results: Ban (12 cents a pound) and

Kalite (l 1/* cents) are both trisodium phosphate of nearly the same

degree of purity—both are in fact nearly chemically pure. This ma-

terial, in large lots is being quoted on the New York market at 4

cents a pound.

Ban X, although seeming to be a homogeneous substance under the

microscope, contains both trisodium phosphate and sodium carbonate,

97.3 per cent of the latter and 2.2 per cent of the former, according

to an analysis made in the Weston College laboratory by Mr. Joseph

Moynihan, S.J. This analysis is figured to the dry sample; the orig-
inal substance contains about 25-30 per cent moisture. It sells for

6V2 cents a pound in barrel lots but not knowing the moisture content

of commercial soda ash I would not care to make an estimate of its

cost to the manufacturer. A washing powder, called “Aero Famous

Formula,” contains about 85 per cent sodium carbonate and about

15 per cent sodium silicate—a little soap powder, however, is present

(around one per cent) to make a suds.

A brand of weed killer coming in a gallon can (at about 7 dollars a

gallon), is an alkaline solution of sodium arsenite—it has a specific

gravity of about 1.28 and the directions call for dilution with 40 gal-

lons of water for use in killing weeds. We have not had a chance

to run the arsenic on it quantitatively, but with arsenious oxide selling
for 3% cents a pound and commercial caustic soda at about 3 cents,

both in large quantities, it is clear that the resulting weed killer is not

being distributed gratis.
Preliminary tests on a brand of rat and mouse poison, made up

in little pellets to simulate grain, indicate that its active ingredient is

strychnine.
I am indebted for the following information to Fr. Joseph J. Sulli-

van, S.J., of Boston College.
A brand of deodorizing crystals used in toilets, etc., which is sold

in small quantities for 51.50 a pound turned out to be para-dichlorben-
zene which comes on the market in 250 lb. drums at 18 cents a pound
—the Dow Chemical Cos. manufacture large quantities of it under the

name of Paradow—one of its trade names when one pays SI-50 for it

is Deodoroma. A little Oil of Cedar leaves or other cheap essential

oil is usually mixed with it. Avery satisfactory cockroach powder
for kitchen and scullery use may be made up by mixing equal parts
of sodium fluoride and Dalmatian Powder (Pyrethrum). At Weston

we use equal parts of sodium fluoride and ordinary flour, which we

found to be the constituents of a very successful and expensive cock-
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roach poison now on the market. As this mixture looks exactly like

flour, it must be kept away from the ordinary places of storage as it

is also very poisonous to human beings. Finally, two brands of the

substance used to clean out sink drains, etc., and which were not sup-

posed to contain any “lye,” analyzed 98 per cent sodium hydroxide and

2 per cent sodium carbonate. One had a little aluminum dust in it

besides.

At Weston we have worked out a little modification of the usual

method for determining the acidity in wine. Most directions prescribe

titrating with litmus paper as an outside indicator, but we dilute 5

cc. of the wine with 250 cc. water, add 1 cc. 1 per cent phenolphthalein,

and titrate boiling with N/10 alkali, running a blank on the water

and indicator used. The end-point is not a true pink, but is easily

noted, and the blank takes care of the unusual amount of indicator.

The method checked perfectly against a 1 per cent solution of tar

taric acid, saturated with CO2, instead of wine. This of course gives

total acidity—the volatile acids may be distilled off if desired and de-

termined in the usual way.

Formulae for Diluting Solutions

REV. FRANCIS W. POWER, S.J.

The question frequently arises in laboratory work of altering the

strength of solutions, usually by diluting them with water, to some

given concentration, when the strength of the original solution is

given. I submit for criticism and suggestion the following dilution

formulae. There are a good many different forms given them in the

various books, but these are quite simple and direct and lend them-

selves easily to graphic representation if necessary. The usefulness

of some such simple formulae was brought home to me a good many

years ago when I was shown up by the family druggist at being

unable to tell him offhand how to dilute out an 85 per cent phosphoric
acid solution to one of 10 per cent—he knew of course, but I didn’t.

First, as regards dilution of solutions:

Nomenclature
% by weight of

Volume Specific Gravity active constituent

Weak solution amp

Strong solution b n q

Desired solution k x r

The fundamental relations are

am + bn 3= kx and amp + bnq = kxr

whence

_

kxr bnq
__

bn (q-r)
mp m(r-p)

k _

kxr amp
_

am (r-p)

nq n (q-r)
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_

amp + bnq
_

amp -+- bnq
r -

xr fa

,
_

amp + bnq
_

bnq -f- amp

kx am + bn

If the solutions are to be diluted with water, the latter becomes the

“weak solution” and m== 1, p== 0. In this case we have

a
_

bn-(q-r)
_

bnq
r xr

bi=
ar

r _
bnq

_

_

bnq
n (q-r) kx a + bn

All these expressions are exact enough for all practical purposes

as they assume no volume change on mixing the solutions, and it is

supposed that one has at hand a set of specific gravity tables such as

is found in any of the standard chemical handbooks. The following
expressions however are inexact except where the volumes of the

two solutions differ widely:

k=a + b

am 4- b
X— !

a + b

Thus, if equal volumes of concentrated sulphuric acid and water are

mixed, their volumes are not strictly additive, but come out about 1.87

volumes instead of .2.00, with corresponding changes in the specific
gravity and the percent strength.

It should be recalled that the system of percent strength of solu-

tions such as we consider here is figured on a purely weight basis;

a 10 per cent solution of silver nitrate means that 90 grams of water

(or 90 cc. for all practical purposes), are used to dissolve 10 grams

of silver nitrate; in a 50 per cent solution of sodium hydroxide weigh-
ing one kilogram there are present 500 grams of water and 500 grams

of sodium hydroxide, although the volume of this solution will

be, according to the specific gravity tables, 654 cc. Unless otherwise

specified, percent strength always means percent by weight—the term

per cent by volume is usually restricted to alcohol. In case we are

dealing with volumetric solutions which are generally very dilute, the

normality may often be substituted for percent strength in the equa-

tions and the dilutions figured accordingly.

A few examples will show how the formulae work out.

1) How much concentrated sulphuric acid S.G. 1.84 containing
95.6% H2SO4 is needed to make up 10 liters of battery acid S.G. 1.20

containing 27.3% H2SO4? Here we have k 10, x = 1.20, r 0.273,

q = 0.956, n = 1.84.

,

kxr 10x1.20 x.273
. M r

qn .956 x 1.84

That is, 1865 cc. cone. H2SO4 is added to a sufficiency of water, and

the mixture diluted out to 10 liters.
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2) What strength alcohol is made by mixing equal volumes of

water and commercial ethyl alcohol S.G. 0.804 containing 95.0%

C 2 HS OH?

Here we have b = 1, n = 0.804, q =0.95, a = 1.

bnq
_

1 x .804 x .95
_ 2%1

a + bn 1 -f- (1 x .804)

3) How should glacial acetic acid and water be mixed to give an

acid containing 28% The S. G. of glacial acetic acid is

given as 1.055. Here we have b= 1 (let us say), n = 1.055, q = 1.00

(assuming that the acid is 100% acetic), r = 0.28.

a =

bn (-r)
,=

lx 1.055 x.72
=2 n _ that ig

r .28

to each volume of the strong acetic acid we must add 2.71 volumes of

water. Note that here the final volume was not specified, hence it is

not necessary to know the specific gravity of the desired acid.

4) A hydrochloric acid is found on standardizing to be 1.150 nor-

mal; how much water must be added to each liter of it to bring it to

exact normality? The specific gravity of this acid from the tables

should be 1.02, so we have b = 1.00, n = 1.02, q = 1.15, r = 1.00

a = bn(q-r)_ =
1 x 1.02 x OHS

= 0>153 cc water which
r 1

may be added from a micro pipette and the acid restandardized.

5) What will be the volume of a mixture of 520 cc. of absolute

alcohol and 480 cc. of water?

As the specific gravity of this mixture is not known, it must be

looked up in the alcohol tables where it is given as a function of the

percent strength of alcohol. This in turn is first calculated as fol-

lows: a = 480, b = 520, n = 0.7939, q = 1.00

bnq
_

520 x .7939 x 1.00
_ 4^951 “

a + bn
-

480 + (520 x .7939)
~ '

The specific gravity of an alcohol 46.25% by weight is 0.922. Then

we have x = .922, r = .4625 and

p _

bnq
_

520 x .7939 x 1.00
_ QRB „„

“

xr
~

.922 x .4625

Experiment gives 964 cc. This is usually given as the maximum

volume contraction for alcohol-water mixtures.

6) How much concentrated hydrochloric acid S. G. 1.18 contain-

ing 35.4% HCI must be added to 3 liters of waters to give a nor-

mal hydrochloric acid?

In this problem we must express the strength of the desired weak

acid in terms of percent HCI by weight: its specific gravity as found

in the tables is 1.018; its strength will be

36 ‘ 46
- = 3.6% HCI by weight

1018



Then we have a = 3000, r = .036, n = 1.18, q = .354 and

, ar 3000 x .036
OQOb = = = 288 cc.

n(q-r) 1.18 x (.354 - .036)

In this case the ratio of strong acid to water is appreciable and it

is inaccurate to express the quantities q and r as normalities; if

this is done the answer comes out too low, viz 243 cc.

Second, as regards making up solutions to a given percentage
by weight.

Nomenclature

v = volume of solvent to start with

k = volume of final solution desired

r = percent strength desired in final solution

m = specific gravity of solvent

x = specific gravity of final solution

w = amount of substance in grams to be added to solvent

The three important relations are:

rvm ,
w= ; kxr

1 r

y
__

kx (1 —r)
m

Examples:

1) How much sodium chloride must be added to a liter of water

to give a 5% solution of NaCl?

Here v = 1000, m = 1, r = 0.05

rvm .05 x 1000
KO c

w = = = 52.6 grams
1 r .95

2) How much potassium hydroxide must be added to 500 cc.

alcohol S.G. 0.80 to give a 10% alcoholic potash solution? v = 500,

r = 0.10, m --
0.8

w -

0-1 * 500 x 0.8
44 5 s

0.9

3) How much sodium hydroxide must be used to make a liter of

50% NaOH solution? k 1000, x = 1.53 (found in the tables) r =

0.50

w = kxr - 1000 x 1.53 x 0.5 = 765 grams.

The 765 grams NaOH are added to 765 cc. water and the volume

of the resulting solution will be very nearly one liter.

4) It is desired to make up a liter of 20% KOH solution in alcohol

whose S. G. is 0.81. The S. G. of the final solution is 0.985. How much

KOH will be required?
k = 1000, x = .985, r = 0.2, w = kxr = 1000 x .985 x .2 = 197 gr.

This should be dissolved in v cc. alcohol:

k = 1000, x = .985, r = 0.2, m = 0.81

v _

kx(l —r)
_

1000 x .985 x 0.8
_ 975 cc

m .81

13
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The figures in this problem are not very exact owing to the uncer-

tainty about the specific gravity of this solution. The value .985 was

obtained experimentally using 95% alcohol and “C.P.” potassium hy-
droxide marked to contain 85% KOH, hence 232 grams of the actual

substance should be used, to take account of this low KOH content.

The Quantum Theory and Energy
JOSEPH T. O’CALLAHAN, S.J.

All are familiar with Millikan’s experiments on the Photoelectric

effect, and the verification of Einstein’s quantum equation. These

results may be summed up as follows: The maximum energy of the

electron, released by light of frequency (v) is equal to a quantity
(Ire), whatever the metal used, minus a quantity (P), which with

great probability represents the energy used up by the electron in

getting free of the metal.

Then, the quantum theory is verified, enthusiasts say! This does

not follow. A distinction must be made between the verification of

Einstein’s equation, V 2 mv 2 Il2P, and the verification of Einstein’s

Theory—the interpretation of the equation. Such a distinction should

be made in all physical experiments, but it is especially necessary

when considering the quantum theory. Not only is the theory a novel

one, not only does it fail to explain the ordinary phenomena of light,
but it seems to be fundamentally untenable.

The hypothesis postulates corpuscular pieces of pure energy, but

energy seems to be an ontological accident, and if it is, then bundles

of pure energy are simple impossibilities. The reason for thinking

that energy is an accident is drawn from the very definition of energy.
In all text books it is defined as the capacity for doing work, but “ca-

pacity” is an abstract notion and connotes that there is something
which has that capacity; just as motion connotes a mover. In scholas-

tic language, the very definition of energy implies that it is an onto-

logical accident, inhering in a substance.

From this it follows that, when scientists speak of any particular
kind of energy, electrical energy for example, mere common sense, to

say nothing of scientific logic, forces us to define it as electrical ca-

pacity for doing work,—and this, of course, connotes that energy is

an accident, inhering in a substance. If scientists mean anything else

by the term when they speak of electrical energy; if they mean a

small particle, or something that has the capacity for doing work,

then they are using the term in a double sense,—and such a double

use can only lead to greater and greater confusion.

This is not a quibble about the use of words, for we are concerned

with the realities behind the words. As far as language is concerned,
we could call a small particle that has the ability to do work, by the

word “energy,” but then by what word would we designate that other

reality—the capacity for doing work? And because the word is com-
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monly used to designate one definite thing—capacity for doing work—-

it should not be used to express an entirely different reality.
Now the question arises, Is the word used to express an entirely

different reality? It might appear to some that the definition, when

first formed, was based on very crude observations, and that from

these, energy did indeed seem to be an accident; but that modern dis-

coveries in physics lead us to conclude that energy is a substance.

Such an assumption seems unfounded, for crude as those observa-

tions may have been, they were, nevertheless, true as far as they
went; and a fact of observation, once established, remains true, mod-

ern discoveries amplify but do not deny previously established facts.

From these crude observations, scientists knew that bodies have the

capacity of doing work, and they call that capacity “energy.” There

is, then, a definite reality underlying that word, and modern dis-

coveries do not change it. Hence we are in no way justified in using

that term for anything else. Nor does it seem that we can modify or

amplify our definition, so that it might express what some modern

physicists wish it to express, for the old definition, “capacity for doing
work,” however modified, can never be twisted into something to which

it is entirely opposed. “Accident” can never be modified into mean-

ing “substance.”

To sum up then: Energy, according to the definition that scientists

themselves give, represents an ontological accident. If, when consid-

ering modern physical discoveries, scientists use energy in this ordi-

nary sense, then the postulate of disembodied energy is simply im-

possible. If scientists wish to designate any other reality, logic com-

pels them to use another word.

Many scientists seem to recognize the problem, but do not face it

squarely. Thus Darrow, speaking of Einstein’s hypothesis, says:
“This idea Einstein offered as an heuristic one, the word, if I grasp

its connotation exactly, . . . describes a theory which achieves suc-

cess, though its author feels at heart that it is really too absurd to be

presentable. The implication is that experimenters should proceed to

verify the predictions based upon the idea, quite as if it were ac-

ceptable, while remembering always that it is absurd. If the successes

continue to mount up, the absurdity may be confidently expected to

fade gradually out of the public mind.” (“Introduction to Contem-

porary Physics,” by K. K. Darrow, Van Nostrand, p. 121.)

The first part of the quotation suggests that Darrow, and Einstein,
too, perhaps, saw the fundamental difficulty; the last part seems to be

a dangerous attempt to dodge that difficulty. Dr. Arthur Compton
seems to fall into the same fault. In his essay, “The Paradox of

Light,” January, 1929, Scribner’s, he says, “We have gradually been

accustoming ourselves to the idea of disembodied energy, or rather

of energy which is its own body.”
This statement may be used in a loose sense, and may mean that

we are accustoming ourselves to the novel fact that energy is a sub-

stance; if that is the meaning, an examination of the facts is neces-

sary, and this shall be made later. If, however, the statement means
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what it seems to mean, it is very dangerous. We accustom ourselves

to facts, but we do not accustom ourselves to ideas. We analyze ideas,
and if they are fundamentally wrong we reject them. We reject the

idea of a square circle, for an analysis shows that it contains a con-

tradiction, and if it were repeated from now till doomsday we would
not accustom ourselves to it. When scientists try to “accustom them-

selves to strange ideas,” they are not meeting the problem squarely,
and such neglect, it would seem, will only lead to greater and greater

confusion in the field of science.

The primary objection to the quantum theory is a philosophical one;
it postulates disembodied energy, and the reasons for rejecting this

postulate have been given, and yet it is claimed that there is experi-
mental proof for that postulate. Perhaps, Dr. Compton meant to say

that we are gradually accustoming ourselves to the fact that energy

is localized outside of matter,—as a substance, of course.

The “proof” of the localization of energy outside of matter is drawn
from experiments performed before the enunciation of the quantum

theory. The argument is given by Rougier, “Philosophy and the New

Physics,” Chapter 111. It is drawn from a consideration of the elec-

tric field around a charged conductor, and of a magnetic field produced
by a magnet or a current. The argument is identical in both cases;

we shall study only the first.

It is known that the electrification of a body determines the be-

havior of attracting and repelling forces in the surrounding space,
under the influence of which, oppositely electrified bodies approach
each other, and similarly electrified bodies repel each other, in accord-

ance with Coulomb’s law. This region of space in which the phe-
nomenon takes place is called the electric field. It is possible to draw

through each point of this electric field a curve whose direction coin-

cides with that of the force capable of thus acting at that point; lines

of electric force are thus obtained which have, however, a purely
geometric significance. Yet, Faraday made the hypothesis that these

lines of force have a real physical significance, they correspond to

certain permanent modifications of the ether. This hypothesis does

explain the observed facts, and has some confirmation from the theo-

retical work of Maxwell. From these premises, the proof of the locali-

zation of energy outside of matter runs thus: “It is possible to get

rid of the consideration of the ether, the existence of which is hypo-

thetical and contradictory, and contemplate nothing but the only posi-

tively accessible reality—electrostatic energy localized outside of the

conductors in the form of the field. The mechanical work of attraction

or repulsion, done by the static forces appearing in an electric field,

represents a certain expenditure of energy; that is, the change of a

certain amount of potential energy into actual energy of motion. Thus,

potential energy localized in empty space around a conductor exists

in conformity with Faraday’s experiments.” (“Philosophy and the

New Physics,” Rougier, trans. by Masius. Publ. by P. Blakiston’s Son

& Cos., p. 44.)
The “proof” has been quoted verbatim, so that it may be clear from

the author’s own words that he has presumed precisely what he
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wished to prove. Passing over this, however, it seems that any at-

tempt of this kind to prove the localization of energy outside of mat-

ter must be rejected. And the rejection is based on the nature of

physical instruments. The argument given above states that we need

“contemplate nothing but the only positively accessible reality.” Now

to argue from any measurements which our instruments register, that

nothing but the measured energy exists, seems illogical. For when we

consider only what our instruments measure, our consideration is

necessarily inadequate. Physical instruments measure only extension

or motion, or say, force and energy; they “prescind,” as it were, from

any substratum that may or may not be there. To detect that sub-

stratum is beyond the scope of the instrument. We say that our

senses are affected only by the accidental modifications of the body;
substance is not the formal object of any sense. So, too, physical
instruments are affected only by accidents, ontological, of course;

they give no direct information, and can give no direct information
about the underlying reality. If they do not record that underlying
reality, and they do not, it is because they “prescind” from it, they
are not adapted to recording it; and because they do not record it, one

is in no way justified in concluding that there is no underlying reality
present.

This discussion has led to the following conclusions: Energy, ac-

cording to the definition given by scientists, is an ontological acci-

dent. The use of the word in any other sense leads to confusion and

illogical thinking. The “experimental proofs” that energy is a sub-

stance are unsound. Therefore, the postulate of disembodied energy

must be rejected.
However, by rejecting the quantum theory, because of this postu-

late and by insisting that energy, as defined by scientists, is an acci-

dent, I do not wish to give the impression that I belittle the work of

modern physicists; quite the opposite is the case. Yet physicists
themselves are puzzled; they admit that present day physics is in a

confused state, fact is far ahead of theory, the experimental foot

has taken a great stride into the sub-atomic world, and made dis-

coveries more wonderful than Alice found in Wonderland. It is hard

for theory to follow into this new wonderland; and theorists seem

to have left the sure road of logic and to have lost themselves in the

woods; they seem to be wandering around in circles. Now, no satis-

factory advance can be made in this way; all hope of solving the

problem of light is lost, if we begin by confusing substance and acci-

dent. It appears then that in these conditions the first move is to find

our way back to the sure road of logical thinking. We must insist

more than ever on clear thought, we must be careful to define our

terms, and once defined we must keep to our definitions.

Millikan once said that science advances on two feet, theory and

experiment; but neither theory nor experiment, nor both together,
will get us anywhere unless we are walking on firm ground; unless

we have a sure logical foundation; only in this way can real scientific

progress be made.
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The Foucault Pendulum Experiment at Weston College
REV. H. M. BROCK, S.J.

On October 30th, 1929, the pendulum experiment devised by that

ingenious French Catholic physicist, Leon Foucault, to demonstrate

the rotation of the earth on its axis was tried for the first time at

Weston College. As is well known, the demonstration depends upon

the fact that a pendulum suspended at a point so as to be free to

swing in any plane will keep its plane of vibration unchanged pro-

vided no other force but gravity acts upon it. This can be shown very

simply to a class by attaching a pendulum to a small table capable
of rotation. A line is drawn along any diameter and the ball started

vibrating along it. The table is then slowly turned. The pendulum
continues to vibrate in the same plane and the path of the ball will

make an angle with the original line whose magnitude depends upon

the rate at which the table is turned. Foucault saw that if the earth

were substituted for the table a pendulum could give ocular evidence

of its rotation about its axis. Thus if a graduated circle were drawn

on the earth with the north pole as the center and a pendulum were

suspended over the pole and set in vibration, the earth would turn

under it counter-clockwise at the rate of fifteen degrees per hour. To

the eye the plane of the pendulum would appear to turn at the same

rate in a clockwise direction. At the equator there would be no shift

while at any other place whose latitude is L degrees the shift would

be 15°sinL per hour.

Foucault is said to have tried the experiment first at the National

Observatory at Paris. It was so successful that in 1851 he decided to

give a public demonstration in the Pantheon. An iron ball weighing

over 62 pounds was suspended from the inside of the dome by a wire

about 200 feet long. Below it a circular rail was set up on the floor.

A ridge of sand was built on this so that a needle attached to the

bottom of the ball would pass through it at each vibration. The plane
of the pendulum apparently turned through the angle predicted by

Foucault, a bit of sand being flicked off at regular intervals. The

demonstration aroused great enthusiasm and it was repeated in vari-

ous parts of the world. Among other places a Foucault pendulum
lias been set up permanently in the new building of the National

Academy of Science at Washington and also in the Museum of Yale

University at New Haven, so that one can try the experiment for

one’s self.

The rotunda at Weston College is admirably adapted for the Fou-

cault experiment, so it was decided to carry it out primarily for the

classes of physics and astronomy. There is plenty of room and the

inner dome is 71.8 feet above the floor. The three galleries serve as

convenient vantage points from which to watch the proceedings. The

pendulum used was ow recently put on the market by the Eastern

Science Supply Compar of Brookline, Mass. The bob is a lacquered
steel ball six inches in i ameter, weighing about 32 pounds. A cylin-
drical support is pro’. ! ed for holding the ball when not in use and
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also a handle which can be screwed into it so that it can easily be

carried about. The ball is suspended by means of a #22 wire. One

end is wound about a small block which fits into a brass plug. This is

screwed flush into the ball in the same hole into which the handle fits.
The upper end of the wire is attached to a C-shaped bronze yoke
which holds a hardened steel pivot. The pivot rests in a conical steel

cup held in a second yoke which is screwed on to a steel plate. The

whole weight of the pendulum rests on the pivot. It can swing freely
in any plane. The fixed yoke carries an inverted cup-like receptacle
directly over the pivot pin. This receives an extension of the pivot.
While not interfering with the vibrations it prevents the pivot yoke
from falling when the pendulum weight is removed. The distance

from the pivot to the top of the ball was 67.75 feet and the time of a

single vibration was 4.56 seconds.
The steel plate holding the suspension was firmly bolted to a 2 by

2% inch wooden beam. The latter was laid across the opening in the

dome in place of the metal grating usually in position. A black-

topped laboratory table was placed directly under the pendulum on

the rotunda floor. Arcs were drawn with chalk about the center of

the table and angles laid off at intervals of 10 degrees. A longi-
tudinal crack in the middle of the top served as the zero line. This

was placed approximately north and south.

The pendulum was set in variation at 8.00 A. M. and also during
the noon and evening recreations. It was started in the usual way

by drawing out the ball beyond the top of the table and holding it in

position by means of a thread. When it came to rest the string was

burned. The table was then adjusted immediately so that the ball

moved along the crack. By sighting along the crack it was easy to

detect any apparent shift in the plane of vibration. A clockwise de-

viation could be detected in less than three minutes, showing that

the table had skewed around, the south end moving eastward more

rapidly than the north end. It was not possible to measure the de-

viation accurately. It was about 10 degrees per hour. The theoretical

value for Weston is 10 degrees 7 minutes. A ridge of sand was also

built up through which the needle at the bottom of the ball passed.
The pendulum continued to vibrate several hours with diminishing
amplitude but the vibrations gradually became decidedly elliptical. In

fact, the main difficulty in the experiment is to avoid the formation

of an elliptical orbit. Even though the bob is perfectly at rest when

started air currents are likely to produce an effect. During the course

of the experiment Fr. J. Blatchford took some pictures and also a

16 mm. moving picture film with a Filrno camera.

Note on Relativity
REV. FREDERICK W. SOHON, S.J.

The recent attempt by Einstein to reduce gravitation and the

electro-magnetic equations to a single formula does not appear to
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have been fortunate. It appears that one of the professors at the

Massachusetts Institute of Technology after studying the proposed
formula arrived at the conclusion that a zero gravitational field re-

sulted. The result was communicated to Einstein and confirmed by
him. Einstein then suggested an alteration of the formula, but I

understand that the new form gives no better result. Hence no

advance has been made on the general theory of relativity.

Meanwhile, the Michelson-Morley experiment has continued to make

trouble. I quote from Contribution No. 373 from Mount Wilson.
“Previous to 1925, the Michelson-Morley experiment has always

been applied to test a specific hypothesis. . . . Throughout all these

observations, extending over a period of years, while the answers to

the various questions have been “no,” there has persisted a constant

and consistent small effect which has not been explained.
...A

complete calculation has now been made, including the observations ot

both 1925 and 1926, which leads to the following conclusion: The

ether-drift experiments at Mount Wilson show, first, that there is a

systematic displacement of the interference fringes of the inter-

ferometer corresponding to a constant relative motion of the earth and

the ether at this observatory of 10 km/sec., with a probable error of

0.5 km/sec.; and second, that the variations in the direction and the

magnitude of the indicated motion are just such as would be pro
duced by a constant motion of the solar system in space, with a

velocity of 200 km/sec., or more, toward an apex in the constellation

Draco, near the pole of the ecliptic, which has a right ascension of

255° (17 hours) and a declination of +6B°; and, third, that the axis

across which the observed azimuth of drift fluctuates, because of the

rotation of the earth on its axis, points in a northwesterly direction,
whereas the simple theory indicates that the axis should coincide with

the north and south meridian.”

The discussion is printed in the Astrophysical Journal, Vol. 68, pp.

341 to 402, Dec. 1928.

The Twenty-Five Cell Squares
REV. FREDERICK W. SOHON, S.J.

Proposed Method.

The twenty-five numbers are each decomposed into the sum of
two numbers called elements. There are ten elements: 0,5, 10, 15,

20, and 1,2, 3,4, and 5. In order to make each column and each row

add up to 65, each column and each row will contain all ten elements.

It has not been shown that such a homogeneous distribution of the

elements is at all necessary and there may be other perfect 25-cent

magic squares that are not made by this method. Other ways of dis-

tributing the elements are shown at the conclusion of this paper. The

pairs of elements 0 and 20, 5 and 15, 1 and 5, 2 and 4 are styled com-

plementary. They form the basis of complementary numbers. The

elements 3 and 10, being self-complementary, are called the middle
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elements and must be symmetrically disposed. The central cell con-

tains both middle elements (10 +3 = 13). The arrangement or dis-

position of any element forms a half-pattern, and half-patterns of

complementary elements must be symmetrically disposed in order that

numbers diametrically opposite and equally distant from the center

may add up to 26. A scheme showing the arrangement of the ele-

ments 0,5, 10, 15, 20 is called a Fundamental Pattern. A scheme

showing the arrangement of the elements 1,2, 3,4, 5, is called a Sup-

plementary Pattern. The square is finally to be synthesized by super-

posing a Supplementary Pattern upon a Fundamental Pattern. If the

arithmetical progression 1,2, etc., 24, 25 is produced, the synthesis

is successful. Otherwise it is rejected. We should like to know what

squares can be constructed by this method.

Nomenclature of Patterns

For the purpose of describing the position of the middle element in

any column, the horizontal rows of the square are designated by the

five vowels a, e, i, o, u. Positions are only given for the first two

columns, the further disposition being determined by the condition

of symmetry. Thus the letters *a*e tell us that the middle element

occupies the top cell in the first column and the bottom cell in the last

column, the next to the top cell in the second column and the next

to the bottom cell in the next to the last column. In other words an

*a*e pattern has the middle element in a diagonal.
If we omit the middle element there are 24 possible dispositions for

the remaining elements consisting of three exterior dispositions con-

taining eight interior dispositions each. In the first exterior disposi-
tion the complementary half patterns are mutually exclusive:

This arrangement in a column is designated by either p or b. The

interior dispositions do not concern us now.

One pair of complementary -half patterns may include the other,
thus:

This arrangement in a column is designated by t or and.

The pairs of complementary half patterns may alternate, thus:

Such an arrangement is designated by either k or g.

1 1 5 5 2 2 4 4 +
5 5 1 1 4 4 2 2 +
2 4 2 4 1 5 1 5 —

4 2 4 2 5 1 5 1

1 1 5 5 2 2 4 4 +
2 4 2 4 1 5 1 5 —

4 2 4 2 5 1 5 1 —

5 5 1 1 4 4 2 2 +

1 1 5 5 2 2 4 4 +
2 4 2 4 1 5 1 5 —

5 5 1 1 4 4 2 2 +
4 2 4 2 5 1 5 1 —
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Only the first two columns are described. In the first column either
of the two consonants may be employed to describe the disposition.
But if either p, t, or k is used, then the use of one of these three let-
ters to describe the second column will signify that both columns

begin with elements from the same complementary pair of half pat-

terns, while the choice of b, and, or g, will signify the contradictory, and

correspondingly if b, and, or gis used in the first column. For example,
consider the important pattern Tape. The vowels tell us that the

middle element occupies a diagonal. T tells us that we have an

inclusive arrangement in the first column, while p tells us that in

the second column the mutually exclusive arrangement prevails,
and that apart from the middle elements, the uppermost element in
the second column is drawn from the same pair of complementary
half patterns as the uppermost element in the first column. If we

represent middle elements by o, one pair of complementary half pat-
tern elements by + and the other by —,

then tape will look like this

A discussion of transformations materially reduces the number of

patterns to be considered.

Transformations.

The 128 simple transformations of the 16-cell Magic Square are

also used in the 25-cell square. If H is reflection in a horizontal

mirror, A alternation, I inversion, then the affect of applying these

is as follows:

from which some rules may be deduced

HA = AH, HI =z IH, HAI = IA

but the immediate application is to reduce the fundamental pattern

to the *a*e form. We have

(*a*e) = (*a*o)A =(*e*a)l=: (*e*u)Al=: (*o*a)lA= (*o*u)Hl
= (*u*e)HA= (*u*o)H

If we decide to adopt *a*e as the standard form for a fundamental

pattern we are interested in those transformations that do not af-

fect the diagonals of a square. This leaves us of the superficial
transformations only

0 H A I AI IA HA HI

a u a e 0 e u 0

e 0 0 a a u e u

i i i i i i i i

0 e e u u a 0 a

u a u 0 u o a e
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C = a rotation through 180°

D and S reflection in the diagonals.

Of the linear transformations

double alternation

double inversion.

Concerning their algebra a few rules suffice.

S, D, A, I, and C are all commutative with each other, except
AI = CIA

The squares are all 0, except again

(AI) - (IA)-’ = C

Finally DS = C, DC = S, CS = D

Our patterns are all symmetrical with respect to the center. Hence

for them Cis the same as O, D the same as S, AI the same as lA,

and the transformations are all commutative. But this is not true

in general.

Construction of the Patterns.

We have shown that it is always possible to bring the element 10

into the *a*e position, so that all fundamental patterns are reduced

to *a*e patterns. If now the first column be assigned as Ba, Da, or

Ga, the i cell of the second column is automatically fixed, because it

must be different from the i cell of the first column. The e cell oi

the second column is also occupied by 10, so that the complement of

the element in the i cell of the second column, must be found in either

the a, o or u cells. Hence, for each selection of the first column

there would appear to be three lines of development open. The pat-

tern Kade has however too many similar elements in the same row,

reducing the number of fundamental patterns to eight.
For the supplementary patterns we cannot get the middle element

into an arbitrary position without spoiling the fundamental pattern.

A few considerations serve to reduce somewhat the number of pat-
terns to be investigated. *a*e, *a*o, *a*u, *o*e, *u*e are excluded

because 13 must occur only in the center of the square, and of course

*a*a, *e*e, *o*o, *u*u are also excluded so that there remain only
*e*a, *e*u, *o*a, *o*u, *u*o. Besides this we add the conditions that

the middle row, middle column, and the *a*e diagonal must each con-

tain all five elements. From these considerations 20 supplementary
patterns are constructed. The patterns are listed with their trans-

formations :

Original D or S Alternation Inversion

Bage Bage Tape Tape

Bape Tage Tage Bape

Tage Bape Bape Tage
Tape Tape Bage Bage

Kage Tade Gabe Tade

Tade Kage Pate Kage



Synthesis.

By copying the fundamental patterns on tissue paper and super-

posing each in turn on all the supplementary patterns successively,
we find that out of the whole list of 28 patterns, only 4 supplement-

ary and two fundamental patterns can be used. The combinations

are

Tubo-tape Tuko-tage

Petu-tape Peba-tage

but an insertion of the numbers shows that the squares constructed

on tage are all duplicate numbers, and therefore we have only squares

constructed on tape. The transformation of these combinations is

as follows:
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Gabe Pate Kage Pate

Pate Gabe Tade Gabe

Pubo Tuko Tuko Pubo

Puko Puko Tubo Tubo

Tubo Tubo Puko Puko

Tuko Pubo Pubo Tuko

Teda Teda Tobu Kega
Kega Kega Poku Teda

Keda Peba Pobu Keda

Peba Keda Kotu Peba

Toda Tebu Tebu Keku

Poga Keku Keku Tebu

Poda Petu Kebu Kebu

Koba Kebu Petu Petu

Tebu Toda Toda Poga

Keku Poga Poga Toda

Kebu Koba Poda Poda

Petu Poda Koba Koba

Tobu Tobu Teda Poku

Poku Poku Kega Tobu

Pobu Kotu Keda Pobu

Kotu Pobu Peba Kotu

0 D A I AD AI ID AID

Tubo- Tubo- Puko- Puko- Puko- Tubo- Puko- Tubo-

tape tape bage bage bage tape bage tape

tape tape bage bage bage tape bage tape

Petu- Poda- Koba- Koba- Kebu- Petu- Kebu- Poda-
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Resolution into Half Patterns .

We have shown that the squares are to be built up from the funda-

mental pattern Tape, and from the supplementary patterns Tubo and

Petu. The resolution of these patterns into half-patterns is of itself

a simple matter, but there are eight ways of doing it, corresponding
to eight ways of disposing the elements in a pattern. As we shall

have to follow these dispositions in the course of transformation we

assign names to them taking care to assign the names in such a way
that the algebra of transformations that we are using may still be ap-

plied to them. For T patterns the names are assigned as follows:

For P patterns the names are assigned in this way:

If some transformation of A say AP gives the same square as some

transformation of B say BQ then B = APQ _l
,

hence to make sure A

and B do not yield duplicates it is only necessary to investigate trans-

formations of A that are likely to reproduce B. We consider only D,
S, C, AI, DAI, SAI, CAI since the others change the patterns as we

have seen. The following table results

If the disposition of elements in Tubo is p and the disposition of

elements in Tape is q, then we may write the interior disposition of

Tubo-tape as (p, q). We have then the following equations:

(o, o) D = (co, o) (1)

(o, o) S = ( o, co) (2)
(o, o) C (co, co) (3)
(o, o) AI = (ai, ai) (4)
(o, o) DAI =: (ia, ai) (5)
(o, o) SAI = (ai, ia) (6)
(o, o) CAI = (ia, ia) (7)

0 a l ai CO ca Cl la

1 1 2 4 5 5 4 2

2 4 1 1 4 2 5 5

4 2 5 5 2 4 1 1

5 5 4 2 1 1 2 4

1 1 2 4 5 5 4 2

5 5 4 2 1 1 2 4

to 4 1 1 4 2 5 5

4 2 5 5 2 4 1 1

0 o-Tubo o-Tape o-Petu

D CO-
“

o-
“ ( -Poda)

S o-
“

co-
“ ( -Poda)

c CO-
“

CO-
“ co-Petu

AI ai- “ ai- “ ia-Petu

DAI ia- “ ai- “ ( -Poda)
SAI ai- “ ia- “

( -Poda)
CAI ia- “ ia- “ ai-Petu



From (2) we conclude that the simultaneous introduction of c into

the dispositions of both patterns does not give anew square, but the

C transformation of the square we already have. Introducing c into

both parts of (cp, q) we have

(cpc, qc) = (p, qc) = (cp, q)

which means that c can be transferred from the fundamental to the

supplementary and vice versa without giving anew square. By the

same argument using equations (1) and (2) it follows for Tubo-tape
that c can be dropped whenever it occurs without giving anew square.

The right hand members of (4), (5), (6), and (7), are therefore all

the same square. Equation (4) develops into a series of equiv-
alences :

(ai, ai) is equivalent to (o, o)

(i , ai) “ (a, o)

so that the dispositions are all paired off. Dropping the c’s the dispo-
sitions are four for each pattern o, a, i, ai, making 16 for Tubo-tape
but these being equivalent in pairs there are eight different interior

dispositions in the final count:

(o, o), (o, a), (o, i), (o, ai), (a,o), (a,a), (a,i), (a, ai)

Interior Dispositions of Petu-tape

The equations for Petu-tape are

(o, o)C = (co, co) (3)

(o, o) AI = (ia, ai) (8)

(o, o) CAI = (ai, ia) (9)

We have just discussed the effect of equation (3) and have seen

that it enables c to be transferred from one pattern to the other. In

this way the right hand member of (8) is the same as (9), so the

interior dispositions of Petu-tape drop from 64 to 32 on account of

(3), and from 32 to 16 on account of (8) and (9).

Conclusion.

We have 24 squares, 8 of the Tubo-tape patterns, 16 of the Petu-

tape pattern, and each of the 24 is subject to 128 transformations.

The patterns are given as follows:

o-Tubo o-Tape o-Petu

26
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Let it be required to construct (a, i) Tubo-tape,

a-Tubo i-Tape Answer

Note 1.

We remarked in the beginning of the study of this square that the

theory is not complete because of the nature of the patterns there

postulated. I here submit ten other patterns in hopes that someone

will find out whether any of them can be used or not.

1bd x1ff 1bd x 4bf 1aa x 1bd

1ae x 4bf 4ac x 4bf 4bf x 4bf

4ac x 1ff 4bf x 1ff4ac x1bd

1ae x 1ff
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Note 2.

The Tubo-tape pattern is readily extended to all odd squares, and

is most easily constructed. In the following patterns, the element

is written in italics where the sum of its column and row numbers is

odd.

o-Tapeo-Tubo

Each element so indicated is translated a distance equal to the

length of one edge of the square, and in a direction at right angles

to the nearest edge of the square. We then obtain

o-Tubo o-Tape

In others words the pattern Tubo-tape corresponds to a very simple
diagonal structure. We may, in fact, start with a fundamental

square

whose columns and rows are parallel to the diagonals of the required

square. We apply different interior dispositions by merely per-

muting the columns and rows of the fundamental square. The re-

quired magic square is then synthesized by translating the outlying
parts of the fundamental square.
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The Cardinal Number and Its Generalization

REV. FREDERICK W. SOHON, S.J.

1. Cardinal Similitude

The foundations of mathematics, though satisfactory, are unneces-

sarily cumbrous for they were built up in spite of a philosophy that

refused to consider universals explicitly as such, and a great sim-

plification is introduced if the matter is attacked more directly by

conceding the doctrine of universals as taught in scholastic episte-
mology. On the other hand, let it not be a matter of surprise that

concepts become unfamiliar when we enter unfamiliar territory. The

nomenclature may be at times unfortunate, but it is only a matter

of nomenclature for the monumental work of Whitehead and Russell,
Principia Mathematica, is written in symbols rather than words, and

words are scarce.

The first notion that we require a name for, is the extension of a

concept. The extension of any concept is called the class defined by
that concept. The concept may be self-contradictory, singular, or uni-

versal. If the concept is self-contradictory its class does not contain

any member, and does not exist. Such a class is technically called the

null class. If the class is defined by a singular concept, it contains

necessarily but one member, and is called a unit class. A class defined

by a universal concept contains more than one member, and if trans-

lated out of the ideal order would be called a multitude. But to avoid

an ignoratio elenchi we shall as pure mathematicians remain wholly
in the ideal order. The inferiors of our universal concepts, as far as

we are concerned, are contemplated among the possibles with no other

bond of union save the common note that is predicable of each one

separately.
There are relations of various kinds between individuals and be-

tween classes, but these can be described when wanted. In particular
if the fact that X and Y have a certain relation R to the same in-

dividual necessarily implies that X and Y are identical, and if further

any individual having this relation to U and to V necessarily implies
that U and V are identical, then the relation R will be called a one-one

relation. If we care to speak of the extremes of a relation as refer-
ent and relatum, then a one-one relation is a relation of such a nature

that the referent corresponding to any given relatum is unique, and

the relatum corresponding to any given referent is likewise unique.

The referents of a relation as a class are called the domain of the re-

lation. The relata as a class are called the converse domain of a

relation. If the relation is a one-one relation, domain and converse

domain are said to be correlated, or to be in one to one correspond-
ence. Hence one to one correspondence is a relation that exists be-

tween classes as a result of their respective members being referents

and relata respectively of a one-one relation.

One to one correspondence is a common enough device and its ab-

stract possibility is all that is being considered. The one-one relation
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upon which it depends may find its origin in a mere extrinsic denomi-
nation. More might be exacted with a loss of generality so that in-

stead of investigating the number concept in general we might con-

fine ourselves to particular systems in the concrete. But to maintain

our generality we must not restrict our concepts before the necessity
for the restriction has been proved. Classes that can be brought with

respect to each other into one to one correspondence, understood in the
liberal sense that we have explained, are said to be cardinally similar.
Cardinal similarity as a relation between classes differs from a state

of one to one correspondence in that the latter relation is a denomina-
tion of the classes with respect to some particular one-one relation,
whereas the former emphasizes the fact that it is quite unimportant
how the classes are to be correlated so long as it is possible in the ab-

stract.

It was thought, naturally enough, that the fundament of the rela-

tion of cardinal similiarity must be the cardinal number, and so it

was called. But the name assigned is unfortunate, because it turns

out to be a generalized cardinal number lacking important arithmet-

ical properties. The alternative name commonly used is Cardinal

Power (in Latin Index Cardinalis). We may then formulate a defini-

tion. The Cardinal Number or Power (Index Cardinalis) of a class

is that note or property which a class has by virtue of which it is

cardinally similar to another class. It will be observed that we have

been able to define a one-one relation without using numbers. If it be

objected that the notion of identity implies the number one, we con-

cede this, and we likewise concede that the diversity of different

identities implies all the other numbers. It is this implication that

makes definition possible. But to show that we have really avoided a

vicious circle we can define an individual X to be identical with Y

if X is P necessarily implies Y is P and if Y is Q necessarily implies
X is Q. Having defined identity without counting, the one-one rela-

tion is defined without counting, one to one correspondence is defined

without counting, cardinal similitude is defined without counting, and

cardinal power is defined without counting. If therefore we succeed

in defining ordinary numbers in terms of cardinal powers, we shall

have a reduction of our mathematical concepts to purely logical ones.

The procedure seems perhaps unnecessarily involved, but it is neces-

sary to separate concepts at great length to show that we have really
avoided a vicious circle.

We made the assertion that the cardinal power is a superior genus

of cardinal number as commonly known. This is a thesis to be

proved, or rather upon clarification it leads to a number of important
theses. Supposing then common numbers are known to the reader

from some other source, it is fairly obvious that some classes at least

that are cardinally similar have the same numerical designation. It

is the converse that we are here interested in, namely, every common

number is a cardinal power.
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The common cardinal number is a note or property of a class, be-

cause it is predicable of a class, thus:

Peter and Paul are two.

It exists of course fundamentally in the individuals, each individual

by itself being a unit class and having the number one. It adds no

new entity to the class, being implied solely by the identity and diver-

sity of the individuals. It does not exist in the class distributively

for we cannot say Peter is two. It is a metaphysical accident that

exists in a class as a class, and if we destroy the conceptual individu-

ality of a class by taking it distributively we also ipso facto resolve

the number into units. The only thing, then, that is not clear is that

a class property such as a common number should necessarily entail

a relation between individuals such as is required for one to one cor-

respondence. The answer is that it does not pick out a particular
one-one relation but makes a one-one relation possible, at least a one-

one relation founded on an extrinsic denomination.

Imagine a line to start simultaneously from each member of one

class. Let each member from which a line originates be called an

enumerator. There will be just as many lines as enumerators. Each

member of the other class to be considered will be called an enumer-

and. Since there are just as many enumerands as enumerators, there

are just as many lines as enumerands. Hence it is absolutely possible
to imagine the lines simultaneously terminating each in a different

enumerand. Since we remain within the order of possibles, we may

formulate a definition, and call enumerand and enumerator standing
at the extremities of a possible line proper to each other. From this

definition there results immediately the one-one relation X is the

proper enumerand of the enumerator Y. Since one class is domain,
and the other converse domain of this relation, the classes are car-

dinally similar. In those cases then where classes have common

cardinal numbers cardinal similarity necessarily exists, so that the

note of cardinal similarity must at least be a constituent note of the

common cardinal number.

Body of Cardinal Notions.

Perhaps the best way of exhibiting the organic growth of mathe-

matical concepts out of purely logical ones will be to set down the

definitions in order as tersely as possible.

Undefined Notions.

Subjects of predication, X, Y, etc.

Predication, X is P, Y is Q, etc.

Relation X has the relation R to Y.

Defined Notions.

Identity.

A subject X is said to be identical with a subject Y if for all predi-
cates of X, Xis P always implies Yis P. (The insertion of this is
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to show that identity can be conceived without an explicit appeal to

number.)

Class.

The subjects, if any, having a given predicate are the class defined

by that predicate.

The Null Class.

The class L such that the proposition X belongs to the class L is

false for all subjects X is called the null class.

A Unit Class.

If a class U to which X belongs has the property that if Y belongs
to U, Y is identical with X, then the class U is called a unit class.

Inclusion.

A class M is said to be part of a class N, if the proposition X be-

longs to M necessarily implies for all subjects X, that X belongs to N.

Exclusion.

The classes M, N are said to be mutually exclusive if for all sub-

jects X, the proposition X belongs to M implies the falsity of the

proposition X belongs to N.

Logical Sum.

The logical sum of the classes M, N is the class defined by the predi-
cate which is the disjunction of their respective predicates. In other

words it is the class each of whose members either belongs to class M

or to class N.

Logical Product, or Common Part.

The logical product or common part of the classes M, N, is the class

each of whose members belongs to class M and to class N.

Referent and Relatum.

If X has the relation R to Y, then X is said to be the referent cor-

responding to Y, and Y is said to be the relatum corresponding to X.

One-one Relation.

If a relation is such that the referents corresponding to a given
relatum Y are identical, and the relata corresponding to a referent X

are necessarily identical, the relation is called a one-one relation.

Domain, Converse Domain, and Field.

The class of referents is called the domain of a relation, the class

of relata the converse domain of the relation and their logical sum

the field of the relation.

One to One Correspondence.
The relation between domain and converse domain of a one-one re-

lation, is called one to one correspondence. The logical process of

finding or defining a one-one relation whose domain is the class M

and whose converse domain is the class N, is called bringing the

classes M and N into one to one correspondence.
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Cardinal Similarity.
Classes that can be brought into one to one correspondence are said

to be cardinally similar.

Cardinal Number or Power.

The predicate of a class implying cardinal similarity, or the possi-

bility of one to one correspondence is called the cardinal number or

power of that class.

Zero.

Zero is defined as the cardinal power of the null class.

One.

One is defined as the cardinal power of a unit class.

Addition.

n + m is the cardinal power of the logical sum of the mutually
exclusive classes whose respective cardinal powers are n, m.

Finite Integers.
2 = 1 + 1,3 = 2 + 1, 4 = 3 + 1, etc. and the class of finite integers

is defined as the class of cardinal powers to which zero belongs, and

which has the further property that if n is a member of it n + 1,

provided it has a meaning, must also be a member of it.

Multiplication and involution can be defined, but ordinal notions are

needed, so the definitions are not given. Subtraction, division, and

evolution, can be defined, will not always be possible, and even then

can only be proved unique by mathematical induction.

2. Cardinal Dissimilitude

Two classes have been defined to be cardinally similar if they can

be brought into one to one correspondence. Two classes will be said

to be cardinally dissimilar if it is absolutely impossible to bring them

into one to one correspondence. If a given class M is dissimilar to

another class N, and if class M can be brought into one to one cor-

respondence with a part of class N, then the class M is said to be

cardinally less and class N is said to be cardinally greater. We are

studying the arrangement of classes according to the relations car-

dinally less, cardinally similar, cardinally greater. A different set

of concepts based on the relation of whole and part is sometimes used,

and to avoid confusion we shall say that a part of a class not identical

with the whole is always partially less than the whole. Thus another

set of relations, partially less, totally equal, partially greater, might
be considered.

In studying a class we may consider various groups of the mem-

bers belonging to a class. A group will be defined as a class con-

taining no members not belonging to the given class. Thus, if we

have a class with three members A, B, C, there will be eight groups:

(1) the null group having no members, (2) a unit group with A

alone, (3) a unit group with B alone, (4) a unit group with C alone,
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(5) a group consisting of A and B, (6) a group consisting of B and

C, (7) a group consisting of C and A, and (8) a group consisting of

A, B, and C. The addition of a fourth member to the original class

would double the number of groups, because the new member could

be added or not added to each of the eight groups. In this way it is

easily seen that if we have a class with n members there will be 2n

groups of these n members. We now wish to prove that apart from

the null class, every class has more groups than members. Since there

are always as many unit groups as members it is evident that the

members are partially less and the groups partially greater. But we

want to prove that the members are cardinally less and the groups

cardinally greater. To do this it will be sufficient to prove that it is

absolutely impossible to get a one to one correspondence between

groups and members, for then the obvious one to one correspondence
between members and unit groups will clinch the inequality.

We shall show that the supposition of a one to one correspondence

leads to a contradiction. Let each member that corresponds to some

group be called the enumerator of that group. Let each group that

has a member to correspond to it be called an enumerated group. A

group not corresponding to any member is an unenumerated group.

A member may or may not belong to the group to which it is sup-

posed to correspond. If a member happens to belong to the group

it enumerates, it is called an included enumerator, and its group is an

including group. If the member does not belong to the group it

enumerates, it is called an excluded enumerator, and the group it

enumerates is called an excluding group. We shall show that the

group consisting of the excluded enumerators is always an unenumer-

ated group.

In the first place excluded enumerators must exist. If all the

enumerators were included enumerators, each enumerator would have

to enumerate the unit group of which it is the only member for other-

wise a unit group would have no enumerator. But then there would

be no enumerator not employed in enumerating a unit group, and only
unit groups would be enumerated. Hence either one to one cor-

respondence is impossible, or else there must be excluded enumerators.

Now consider the group of excluded enumerators. If the group is

to have an included enumerator, its own enumerator must be found

among its own members. But each member is an excluded enumerator

of the group it enumerates. Hence if the group of excluded enu-

merators has an included enumerator it must be an excluded enu-

merator, which is a contradiction. Consider the other horn of the

dilemma. Suppose the group of excluded enumerators to have an ex-

cluded enumerator. The group itself contains all the excluded

enumerators and therefore the required excluded enumerator

among the others. Hence this excluded enumerator belongs to tho

group of excluded enumerators which it enumerates and is therefore

at the same time an included enumerator. These contradictions show
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that the group of excluded enumerators cannot have any enumerator

either excluded or included. It is therefore an unenumerated group,

so that one to one correspondence is shown to be absolutely impossible.
Hence apart from the null class, every class has more groups than

members.

The consequences of this demonstration are rather far reaching. In

the first place consider the class of finite integers. Is there a greatest
finite integer? For any given value of n, there are n integers greater

than zero, the greatest of which is n. But there are always more than

n groups of n things. Hence for every finite integer n there is always
another 2n greater than n. We have therefore proved that there is

no greatest finite integer.
Since there is no greatest finite integer, it is clear that the cardinal

power of the class of finite integers cannot itself be a finite integer.

Hence either there are cardinal powers that are not finite integers,

or we have a class that cannot take the predicate cardinally similar.

Can cardinal similitude be predicated of a class such as the class of

finite integers? It should be pointed out that the existence of the

class is not at stake. That has been proved when we showed that

2n is always greater than n. The question is whether in drawing up

our concepts of cardinal power our definitions were sufficiently gen-

eral so as not to limit their applicability to those cases only where

the class should have a finite integer for a cardinal power. A review

of our body of cardinal notions reveals their patent generality. We

can go further. Because our classes are the extensions of concepts,
and because there are such things as universal concepts, and because

we know how to treat universal concepts without having to examine

their inferiors one by one, and because a one-one relation is a dis-

tributive and not a collective notion, we can apply our terms to classes

whose members we cannot count. We shall show that cardinal simili-

tude can be predicated of such a class by working out an example.
Since there is no greatest finite integer, it follows that there is no

greatest even integer, and that there is no greatest odd integer. Hence

the class of even integers is a class that does not have a finite integer

for a cardinal power. We shall show that the class of even integers

is cardinally similar to the class of odd integers. Let Abe any even

integer. Then A-l is an odd integer. Let A-l =B. The relation be-

tween A and B is a one-one relation, because for each A there is only
one B, and for each B there is only one A. Furthermore the class of

even integers is the domain of the relation, for there is no even integer
for which the relation does not hold. Similarly the class of odd in-

tegers is converse domain of the relation. But where one class is do-

main and the other converse domain of a one-one relation the classes

are cardinally similar. Hence the class of even integers is cardinally
similar to the class of odd integers. Hence cardinal similarity is

really predicable of classes whose members cannot be counted. Hence

there exists a predicate of cardinal similarity that is not a finite in-

teger.
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Anew concept calls for anew name. We therefore define a car-

dinal power that is not a finite integer to be a transfinite cardinal.

The cardinal power of the class of finite integers is defined to be the

cardinal power ,aleph nihil. The groups of finite integers form a class

cardinally greater than the class of finite integers, so its cardinal

power C = 2;s
0

will be a transfinite cardinal greater than s'
() . Our

proposition that every class but the null class has more groups than

members thus leads to an endless hierarchy of transfinite cardinals,
so that there is no absolute maximum cardinal power finite or trans-

finite. To be philosophically infinite, a thing must be so great that

no greater either exists or is conceivable. But there is always a

greater than any transfinite cardinal. Hence all the transfinite car-

dinals are philosophically finite.

The notion of cardinal power might have been suspected as a gen-

eralization of cardinal number from the fact that all the properties

of common cardinal numbers could not be deduced from it, thus show-

ing that some notes were missing from the comprehension of the

concept. But the discovery of transfinite cardinals shows clearly that

cardinal power is indeed a generalization, having not only a smaller

comprehension, but also a larger extension than the concept finite

integer. Cardinal powers represent finite integers to some extent,

and a futile sort of cardinal arithmetic can be constructed, but one

must not be mislead into stressing the resemblance between the con-

cepts. When the full significance of the cardinal power dawns upon

us, we shall probably prefer to think of it as a quality than as a

quantity.

To bring out this last point more vividly, consider the one-one rela-

tion A = 28, The domain is the class of finite integers, but the con-

verse domain is the class of even integers. Hence the class of even

integers has the same cardinal power as the class of finite integers.

In other words a part can be cardinally similar to the whole just as a

part can be qualitatively similar to the whole. This fact is usually
made the definition of transfinite cardinal, a somewhat arbitrary

procedure, it must be admitted.

Finite integers and transfinite cardinals, it will be argued, form a

dichotomy of the class of cardinal powers. Does there exist a frontier

between the segments of the dichotomy? The answer depends on the

way in which the class of cardinal powers is put in order. If it is put

in order by means of the relations partially less than, totally equal,

partially greater, then there is no frontier. If numbered groups of

members are progressively removed from transfinite classes the result-

ing classes fall between the original classes and the segment of finite

integers, but there is no limit to this process, and the lower segment

of the dichotomy is never reached. If the order is established by

means of the relations cardinally less, cardinally similar, cardinally

greater we have a frontier. All classes cardinally similar to the same

class then fall in the same place and Kq, the least of the transfinites,

is the frontier. Increasing or decreasing a transfinite class by mathe-
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matically finite groups does increase or decrease the entity of the

transfinite class. But the transfinite cardinal does not attempt to

measure this entity. It cannot be measured. The transfinite cardinal

does tell us something very definite about this entity, and its relation

to the entity of other classes. It should be pointed out that the impos-

sibility of passing from finite integer to transfinite integer is entirely
a question of method. As the proposed method is nothing but the

definition of the concept finite integer, it cannot possibly reach the

transfinite cardinal.

One must not be led into thinking that the transfinite cardinals

will permit a revamping of the old idea of infinity. The difference be-

tween any transfinite and any finite variable is and always remains

greater than any finite integer however great. Hence the definition
of a limit cannot be applied. And even if it could, which transfinite

would be selected? And should the transfinites be arranged accord-

ing to cardinal relations, or according to the relations based on the

notion of whole and part? It seems therefore that the concept of

limit not only does not apply, but the concept cannot be generalized
so as to obtain any useful notion that might apply. To close the

discussion we assert that variables are ordinal notions, and when

you begin to talk about the values of a variable you cease to talk

about cardinal powers as such. Cardinal powers are still a long way
from the number system of mathematics.

Many ingenious difficulties can be proposed in this connection, only
one of which is serious. Some, familiar only with the operations of

arithmetic and elementary algebra and not having learned that

the formal laws of symbolic operations must be modified as one

passes from one field of mathematical entities to another, assume

that the failure of certain arithmetical laws to hold for transfinites

argues a repugnance in the concept. Others, not caring to form

clear cut concepts, dismiss the matter with the epithet indefinite.
Others confuse the transfinite with the philosophical infinite. The

proof of the repugnance of the philosophical infinite is the only dif-

ficult part of our work. The difficulties urged against the philoso-
phically finite transfinite under the misapprehension that it is phil-

osophically infinite have not even sufficient vigor to help us in prov-

ing the repugnance of the philosophical infinite itself. The trans-

finite is philosophically finite. The cardinal power embracing both
finite integers and transfinite cardinals is a concept that is meta-

physically univocal, but in its inferiors is physically analogous.
To review our position, we assert that a multitude that is so vast

that it can never be completely assembled by the successive addition

of single individuals added one by one, cannot be deemed repugnant

on the ground of the multiplicity of individuals involved; and if

such a multitude cannot actually exist in the physical order it must

be either due to lack of material or to lack of an efficient cause

capable of producing it. We assert that there is nothing in the no-

tion of such a multitude that would imply that it is a multitude
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so large that a larger cannot be conceived. The refutation of this

notion has illumined a dark shadow cast by the imagination. We

assert that the notion of cardinal number is susceptible of an ob-

vious and necessary generalization. This generalization is then

capable of being applied to multitudes such as those under discus-

sion and the notion of a transfinite cardinal is something very tan-

gible. We admit that this generalization at first seems violent and

seems to destroy the very notion of number itself, but we assert this

to be because we have never thought of the cardinal number as the

note of cardinal similarity, but always considered it as if its total

essence lay in the fact that it obeys the principle of mathematical in-

duction. Transfinite cardinals, not obeying this principle which con-

stitutes the specific difference between themselves and the more com-

mon cardinal numbers rightly, impress us as more like descriptive
adjectives than like finite integers.

The only real difficulty is connected with the proof that there is no

absolute maximum cardinal power. It is admitted that starting with

the class of finite integers and taking groups, and then groups of

groups, then groups of groups of groups, etc., we get an endless hier-

archy of transfinite cardinals, and that there is no greatest in this

series. But if we take the class of all classes, then the groups will

also be members of the class itself, and have the same cardinal power

as the class. If we look for the group of excluded enumerators, it

turns out to be the class of all non-self-contained classes. Now it can

be shown that the latter class has contradictory predicates. Hence

there is no group of excluded enumerators in this case, and the proof

falls down. To answer this difficulty we have to put our finger on the

precise point where the class of all non-self-contained classes becomes

contradictory. We argue that a class is not one entity in the same

sense that its members are each one entity. Hence no class can be a

member of itself. Therefore all classes are non-self-contained classes,

and the class of non-self-contained classes exists, but the word class

occurs in two different senses in the expression. When the word all

is inserted, it is implied that the two uses of the word class are in

the same sense, because the word all is thereupon taken as justifica
tion for using the concept as though the word class were univocal.

Hence the contradiction arises when the word all is inserted to bear

this implication. If now we agree that the word all is not to have

this implication, the contradictions are straightened out, for the class

in question is not a self-contained class, there being no self-contained

classes, and it is not a non-self-contained class in the same sense that

its members are non-self-contained classes, for it is not a class in the

sense that its members are classes. If we apply this to the group of

excluded enumerators, we find that it does not deny the existence of

a group of excluded enumerators, but prevents the group from being

itself an excluded enumerator. With this distinction the proof stands,

so that there appears to be no absolute maximum cardinal power.
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Errata

Owing to a mistake on the part of the editor our own Jesuit

magazine, “America,” was unintentionally omitted from the list of

those magazines carrying special articles on science and scientific

research. This the more regrettable as “America” has always been a

pathfinder for the advancement of the inductive method and the ex-

perimental approach to truth.

Through the fault of the editor, Mr. Quigley’s and Mr. Barry’s
articles were also printed inaccurately.

The following corrections are to be made in Mr. Quigley’s article

on minimum deviation of prism:

p. 16. line 25,
Read arcsin (n sin r) instead of

arcsin (in sin r)
p. 17, line 1,

Read When r < A/2 (i.e. when r < A— r),

p. 17, line 2,

Read (n 2 —1) /cos 2 (A —r) instead of
(n 2 —1) cos 2 (A —r)

A correction to Mr. Barry’s article on Calendar Dates.

On page 21, at the end of Rule 2, instead of 16-28-0 read 6-28-0.

Apropos of the article entitled “Notes for Authors,” Mr. Barry re-

cently received from McGraw-Hill Book Cos., 370 Seventh Avenue,
N. Y., a booklet entitled “Suggestions to McGraw-Hill Authors.”

That too may be had free for the asking. It is practically the same

as the Wiley publication mentioned in the article.
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