h. M. D. G.

BULLETIN
of the
ANGRICAN ASSOCIATION OF JESUIT SCIENTISTS
(ivestern Section)
(For private circulation)

Vol. II, No. 4. Veston, licss. March-April, 1925. p. 40.

THi EARTHQUAKN。
ifter heving been pirvileged to witness the rere spectecle of ε total eclipse of the sun, the norines.stern pert of the united Stetes was visited by en earthquake on the evening of $\mathrm{Peb} .28,1925$. The shocks were cuite makked in New inglend especielly in the region north of Boston. Church bells were rung, clokks tere stopped and people fled from thecires almost in penic. Aperi from the press reports we heve not received eny cocounts of the effects felt in different parts of the Province. The nevispapers gave considerable prominence to the reports of Fither Tondorf and.II. J.S. O'Conor, Directors of tie Seismologicel Observatories ε it Georgetom and Fordham and of Fa.ther F. Cderbach, Director or the Cbservatory et John Carroll University at clevelend, Chio. It ves stated thet it Pordham the shock wes sufficient to break the needle of the lever of the seismogreph. Fiere at ..eston the shocks were not severe and vere pessed unnoticed by meny. The editoribl offices of the Eulletin situeted in the Thite Fouse on Sudbury Road received e distinct though not en alarming shake-up. This was et $9: 22$ F.M. The tebles and cheirs shook and the window panes rettled. There t:es no ind. Finther Tondorf our veteren seismologist vrites us that the center of the earthquake hes been definitely located in the region about Leke St. Larrence. The cause was due to the Logan Feult. This recalls the famous earticuake of Feb. 5, 1663, Whose effects were so strongly felt in southeastern Canada and in New Ingland. Our best descriptions are due to French Jesuit Missionaries who eere on the spot in Cineda. With true scientific instinct they recorded everything and included their observations in reports sent to their Superiors. These observations may be found in the Jesuit Relations. Their seismologicel successors cen nov detect earthouakes thousends of miles avey. We mey edd thet nimRICA for hexch 28, 1925, calls atiention to the services rendered to the science of seismology by the Observatories attached to our Catholic Colleges and Universities.

PHYSICS THKCHERS NAHET AT BOSTON COLTHGZ.
The Eastern Association of Physics Teachers held its hundredth meeting et Boston College, Newton, lie.ss., on Set., Merch 28, 1925. The Association usually meets at some school or college in New ingland, and this was the first time in its history thet it met at a Catholic institution of learning. The magnificent new Science Building which was mede possible by the recent college drive and which was opened for cless insturction last fall wes pleced at the disposel of the visitors. The business meeting was held in the large chemistry lecture room at about 10:00 A.N. with the President of the Association

Mr. F.E. Meson of the Bosyon High School of Cominerce, in the chair. Father Williem Devlin, Fresident of the College, edaressed the members welcoming them to the Feights and telling them thet Boston College wes theirs for the diy. Fie assured them furthemore that they would always be welcome in its halls and laboratories. The remainder of the session was held in the Physics lecture room. Father F.N. Brock of Beirview, Veston, lass., geve e. lecture on "Some Properties of the Thermionic Vacuum Tube", vith experimentel illustretions. He was followed by Mr. D.R. Hill, of the Kelvinetor Cormpeny of Eoston, who described and showed the refrigerating unit placed on the market by his compeny for home refrigeration. A luncheon was served by the College to 511 the guests in the Assembly Nall. Inspection of the Science Iuilding followed. Frofessor F.A. Szunders opened the efternoon session with an address on "The Use of Llectrons in Teaching". He Ieid stress on the usefulness of the electron theory in explaining electrical phenomene. and showed hov he used it in his oin courses in Genercl Physics. He mentioned the confucion caused by the difference in the direction of flow of the electrons and the conventionel direction of the current. He seid that he hoped that some brave soul vould come along who would ignore the latier comiletely. The mein difficulty in the way is the way in which our electrical instruments are labeled and of course elso the common text books. The annual address of the Vice-President, hir. Relph H. Hicuser, of the donder Hell School, Cembridge, Mess., Wis given on "Some Observations on the Teaching of Physics". Father D.J. Lynch, Professor of Physics at Boston College, lad cherge of the arrengements at the college and sav to it that every thing vent off mell. Mrs. V.F. Roberts, President of the Fhilomatheia. Club, wes on hand to look after the interests of the ladies. The members of the Association wers very favorably impressed by the nev Science Building end greatly eppreciated the cordial hospitality of the College.

PROPOSTED NEW INSTITUTE AT GEORGETOWN.
Fe.ther G.I. Coyle of Georgetown recently sent us a pemphlet, evidently gotten out under his direction, showing the need of fundamentel chemical research in solving medicel problems end describing the plens of the proposed new Institute of Chemo-Medical Research to be founded at Georgetown. An endownent of $3,080,000.00$ is estimated a.s necessary in order to begin the work. Plens are being mede and a campaign organized undtr father Coyle's direction. Fie writes that responses from those who heve been epproached so fer are encourgging. In the pamphlet mention is made of our present health rate and of the economic loss to the country on account of sickness to sey nothing of our ennual drug bill of $800,000,000.00$ much of which is spent for pe-tent medicines. Some of the triumphs of research in conouoring disease are described. Pestuer's rork is to serve as a model. We wish Georgetown all success in organizing the new Institute and in acquiring en adequate endowment. It will give our oldest Catholic University a high standing in the vorld of science.
THU EINSTEIN SHIFT -- CCNFLICTING EVIDENCE.
The Annual Reports of the leading Observatories of the United States and Canada have just been published in POEULiR ASTRONOMY for January and February, 1925. The two following extracts are interosting end indicate the gr eat difficulty of arriving at certitude on the matier in question.
"Hrcellent progress has been made by Mr. Burns in the program of precise solar vave-length determination. As ε by product of this extensive progrem, in which an accuracy of one pert in five million is easily secured, Irr. Eurns has obtained data. as to the shift of the soler lines fhidhltLpheq to the red which appear to negative the prediction mede from the theory of Relativity. Einstein predicted ε shift of the soler lines to the red amounting to 0.009 A , the seme for all lines in any given spectral region. Burns finds a regular progression in shift to the red, varying with the line intensity...............it seems impossible to reconcile this progressive shifí with the simple iinstein prediction through any consideration of high or low levels, or any velocity factors depending upon ascending or descending currents." From Director F..D. Curtis' Report of kllegheny Observatory. POPULAR ASTRONOMY for Jen. 1925, pp. 18-19.

From liount silson we have the following: "Two results of first importence heve cheracterized the solor investigetions of the year...........Second, the contimmetion by St. Jolun of the gravitational shift of the lines in the solar spectrum seems to afford final evidence for the validity for the theory of general Reletivity. St. John's results, based on over 330 iron lines, show in a simple and convincing way the effect of the combination of the relativity displacement with that due to convection currents in the solar atmosphere end explain meny of the difficulties encountered by observers in this field..........Grouped accordıng to line intensity, the differences (between the sun and arc spoctrw, i.e. the shift) increase progressively with the intensity. Jine intensity, on the average, however, is an indication of the lowel. In the soler atmosphere at vinich the lines originate. Dowward convection currents at high levels, and upkerd currents at low levels vith naximum velocities of the order of 0.2 or $0.3 \mathrm{~km} . / \mathrm{sec}$. would remove the progression in the differences (i.e. in the shift of the lines). That such currents exist in the case of certion elements at least, is well known". From the Report of Director Welter S. Adams of the fount Wilson Observetory. POPULAR ASTRONOMY, Feb. 1925. Father E.C. Phillips S.J.

THE TEMPERATURE OF NARS.
Those interested in the question of the possibility and probebility of the inhabitability of planets ocher then the earth and particularly the inhabitability of Nars will recall the figures of Poynting, indicating the very low temperature of -20 deg . C. at the equatorial surface of Mars and an average temperature of -38 deg. C. over the entire surface of this planet. We will also recsil that Poynting looked on this low temperature as in exgument Egeinst Lowell's theory of a Fiartian people.

In 1921 हttempts were made at a redetermination of plenetary temperatures at the Lowell Observatory, Flegstaff, Arizona. The method used was to separate the rediation into spectrol components by means of transmission screens, and measuring the energy by means of stellar thermo-couples. In viev of the optimum conditions for Forking on the planet Mars at the recent opposition these researches were repeated and the following temperatures are now offered. The temperature about the equetor is now believed to be from 10 deg. to 20 deg . C. Radiometric measurements made on twenty nights under a wide range of instru:mental and meteorological conditions indiczte that the bright regions of lars are cooler tian the dark and thet the sun-rise side of the planet is at 2 lower temperature than the side exposed to the after noon sun, and that the polax region is intensely cold.

Dr．Coblentz says that his measurements show that the noon－ day temperature of the equatorial surfece of Mars at perihelion is no unlike thet of a cool bright dey on the Earth，with the temperatures ranging from five to fifteen degrees C ．

Father F．A．Tondorf S．J．
SAMPLW OF A LABORATORY MANUAL IN ZOOLOGY．
Wr．A．J．MacCormack S．J．，Professor of Riology at Holy Cross College，Worcester，Mass．，sends us a semple sheet of ε laboratory manual prepared for the course in zoology there．He rould like some oriticism of it by other teechers of biology．He writes，＂The manual is divided into six parts．The first part deals with the classifica－ tion of the animal in question，giving the derivetion of the names． The second pert deals with the terms and words used bnth in the lec－ tures and in the leboratory．Therefore in lecturing it is not neces－ sary to stop and define or explein eny term．They are all on the sheet before the students＇eyes．Ne is supposed to reed the part concerning which the lecture will be given beforehind．The same is reçured before going into the leboratory．In order to make sure that he does this，evry now and then we hold an unexpected quiz before 2 lecture or laboratory class．The third part gives ε short account of the enimal so that the student may as it were orient himself and know what type of animel he is dealing with．The fourth pert deals with the dissection proper．It is divided into exercises．When the stu－ dent coines into the laboretory he knows he has to do such end such an exercise．All the directions of what and how to cut are given，he is told where to be careful，etc．The filth pert gives a．list of cuesti tions usually not covered in the lectures．Fe is required to find the answers to these and be ready to give them when asked．The sixth part gives the bibliography，with 3.11 the well known books covering the particular thing，together with the page and chapter＂．

GRASSHOPPER

1．CLASSIFICATION．

PHYLUM．	Arthropode．	（G．arthron，joint；pous，foot）．
CLASS．	Insecta．	（I．insectus，cut off）．
ORDER．	Orthroptera．	（G．orthos，straight；pteron，
FAIILY．wing）．		
Acridide．	（G．akris，locust）．	

etc．
2．GLOSSARY．
ABDOMAN－part of the body posterior to the thorax． （L．abdomen，belly）．
ANTENNAE－jointed，thread－like feelers on the head． （I．antenne，e sail－yerd）．
CERCI－
CHITIN－
pair of jointed projections on the tenth somite． （G．kerkos，tail）．
hard，calcareous substance forming exoskeleton． （G．chiton，tunic）．
\qquad
\qquad

\qquad

 \therefore 品

\qquad

 －－
二小力

 $\because 1$ 有 －${ }^{1}$

\square

\qquad
\qquad

\square

－Wetiman
\qquad
\qquad
\qquad
\qquad
 ，
\qquad

CLYPEUS- plate connecting the epicranium and lebrum. l工. clypeus, shielá).
COLON- second pert of intestine, posterior to the ilcull. (G. kolon, member).
etc.
3. Description.

Grasshoppers arc very comion in the fields, great numbers jumping out in front of one as he walks throughthe meadows and open spaces in the country. Some of them are vinged. others are much smaller end wingless. ill are more or less protectively colored since their color closely resembles that of the grass. Their food.........etc.
4. PROCEDURE.

Place gresshopper in dissecting pen, enterior end at your left. Remove with the scissors tie nearest wings.
A. EXTERNAL ENATOLY.

EXERCISA I.

Identify head, thor:x, abdomen. Note chitinous substance covering the body.

IEAD.
Locete thread-like entennae, compound eyes, ocelli.
THORAX.
Note thoracic appendages, the legs, the place and. mode of their attachment, different segments of which they are composed, etc.
B. INTERNAL ANATORY.

EXPRRCISE IV.

With scissors make a slit from posterior to enterior end of the dorsel region, a litule to one side of the mid-dorsal line. As the orgens lie very close to the dbdominel well, this incision must be careinlly done. Remove vithi scissors the entire dorsal wall. Immeciately under the mid-dorsel region is a nerron transperent tube, the FEART. Note the ALIMLNTARY TRACT,etc.

DRAW the orgens "in situ". Libel the pexts.
5. QUESTIONS.

What is the economie importince of tile gresshopper?
Give the most striking differences between the grasshopper and the type previously studied. etc.

.819
-TKITOO

\author{

- nelすcltoana
}

(tac:

. Takoric

 "inta bualmikne azs vorit.

\author{

- Tltorath in fryitiol -8
}
. 2.41 matosmoxi

$$
\begin{aligned}
& \text { March-April, 1925. } \\
& \text { 6. BIBLIOGRAFHY. } \\
& \text { PRAMT, } \\
& \text { MHNGE, } 45 . \\
& \text { Invertebrete Zoology, }
\end{aligned}
$$ etc.

Mr. A.J. MacCormack S.J., Foly Cross College, Worcester, Kass.

THE LAWS OF NOTION (continued)
In the sinstein mechanics it is easilt shown that a. body ected upon by e constent force does not treve? with uniformly accelaerted motion, but insteed has a motion such thet its trece has a constant curvature. The ratio of the force to the curvature is a quantity that is invariant and addative, and consequently a true measure of the amount of substance in the object. If units are chosen so that the velocity of light comes out unity, this quantity is the sarae es the stationory mess, or mass of the object when at rest. The term mass should have been reserved for this concept, and the other idea could be conveyed by the word ineztis.

It may be of interest to exhibit the integration of the expression for the kinetic encrgy:

$$
\begin{gathered}
f=m e=m_{0} /\left(\sqrt{1-v^{2} / c^{2}}\right)^{3} \cdot d v / d t \\
E=\int_{0}^{\nabla} f d s=\int_{0}^{V} m_{0} /\left(\sqrt{1-v^{2} / c^{2}}\right)^{3} \cdot d s \cdot d v / d t=\int_{0}^{\nabla} m_{0} / \sqrt{1-v^{3} / c^{2}} \cdot d v \cdot d s / d t \\
\left.=\int_{0}^{\nabla} m_{0} v \cdot d v /\left(\sqrt{1-v^{2} / c^{2}}\right)^{3}=m_{0} c^{2} / \sqrt{1-v^{2} / c}\right]_{0}^{v}=\left(m_{0} c^{2} / \sqrt{1-v^{2} / c^{2}}\right)-m_{0} c^{2}=\left(m-m_{0}\right) c^{2}
\end{gathered}
$$

It will be seen that the factor m_{0} should not be omitted, It should be remarked in passing that the prevalent philosophy not admitting a distinction between substance and accident connot undorstend the difference between matter and that disposition of matter which permits it to act. The formal cause of action is force, and energy which is merely a conditio sine qua non, is too easily thrown in as a material cause of action and subsequently msy be identified with the matter itself.

In his general theory of gravitation Einstein proceeds to generalize the principle of inertia which states that every body tends to remain at rest, or to pursue uniform motion in a straight line, unless constrained by impressed force to change that state. We have seen thet rest and uniform motion in a straight line axe both represented by straight traces, i.e. treces that are the shortest distances between two points. A Eeners, name for such a shortest path is a geodesic; so we may re-word the principle of inertia:

Every body tends to pursue a geodesic of the time-spece cont. wum unless constrained by impressed force to chenge that state.

Einstein now argues that gravitating forces are inferred from accelerations, thet is from traces curved in the time-space continuum. In a non-euclidean geometry geodesics may be curves. If the timespece continum is not homogeneous, the geodesics may be curved more in one region then in another. The general theory of relativity claims

*ำ룰

(beumes ctoz)
Mol Tront To kter ait

 -a. M :

thet it can essign proper values to these geodesics so as to accurnt for the obselved phenomene of grevitating bodies, the inference being that gravtiation and inertia ere not essentielly different, end tiat forces of gravitation therefore need not be postulated.
before we examine this explanation of gravitation we shoula first make sure of the objective velidity of our concept of force, for it is this concept that is reclly at stake; so let us shift the scene from the iirst law of motion to the third:- For every action there is en equal and opposite reaction. So stated the law begs the cuestion. But we cen stcte it this wey:-

Curvatures of traces in the ime-space continum occur in peirs symmetrical in direction wita magnitudes inversely proportional to their stationery masses.

As long es trices ire sircight hey do not implicate one enother. As socn as they ere curved a mucual quantitative implication occurs. This mututi quintitative implicetion occurring invariably in the case of curved traces, encbles us to argue that bodies whose trace. are curved must someho be different fron bodies whose traces cre straight. A body those trace begins to curve is really changed. There vas no mutuil quantitative implicaticn when the trace wes , At $t \neq A$ streight end there begins to be one now. This is e real chenge. ireal change is produced by a real action -- and the neme we give to a reci action is force. Fence the third lew of motion demends the concept of force.

Bearing this in mind, let us turn to the generel theory of relativity and see if the force of gravitation ias really been eliminated. There are two hypotheses to be investigated. Ther interval between the gravitciting bodzes is either a. substance which for want of a betier name ve may call the ether, or it is nothing.

Teking the first hypothesis we have ε, dilemme. The peculiar curvature of the geodesic concommitent vith the presence of the gravitating object is either the effect of the sarue object -- an effect continuously sustained and hence implying a continuous action of the body on the ether -- or the body is the formel effect of the distortion of the seodesics in this perticular vicinity. (The icea is similar to the vortex atom theory.) In the letter case the geodesics whose formel effect is one body ere modified in the presence of the geodesics wose effect is the other boay, end hence we must recognize an influence or action of the diversification of geodesics in one locality on the diversificetion of geodesics in enother. In botin cases we heve ection.

On the supposition thet the intervils of the time-space continuum are nothing, the geodesics are nothing but the mathematical formulation of a latent quality (in scholastic language it would be called a nisus) in the grevitating object. As the geodesics ere different when the bodies are near, the letent cualities must be different, the bodies are chenged, and change supposes Ection. Hence every alternative postuletes ection. But action is force. Hence relativity doesnot do away with ε force of gravitation. The geodesics five us but the picture of the ection. The picture of en ection is reelly a result of the ection, but besides seeing the picture we must also know hos the picture came to be. The curved geodesics ere the picturc. The action which modifies geodesics under certein circumstences and leaves them unchenged under others we cell force.

An attribute is seid to be relative if it is based on en entity exirinsic to the subject. An attribute is scid to be absolute
if ellthe entities on whici it is based are wholly within the subject cuentities may be relative or absolute as the case mey be, but the inegnitude of a cuentity is relative beccuse it is determined by a unit and the unit is surely outside. Position, rest, end translation we freely adrait to be reletive. Length measured at rest, rotation beceuse it cennot be effected without an accelaretion vinich is a real chenge, end some orientation of the time-spece continuum we hold to be certainly absolute. The dinstein theory cennot be mede the step-ping-stone to philosophicel relativity for its fundamental postulate calls for something ebsolute, an absolute velocity of light.

While the Einstein theory does not help relativism in the philosophical sense, it does eccidentally help that school of philosopiny that hes been styled "deacriptive dynamism", for by the spetialization of time zféaction is reduced to ε concomitence of curvature, the imagination is enchanted by seeing the flux of events portrayed as en intricate interlace of continuous treces to be described, admired, but not explained. The spell is instantly broken, fowever, if gazing at the picture we ask, why?

声r. FoU. Sohon S.J.,
Valkenburg, Follend.
Ye are glad to welcome ε nev: contributor to the Bulletin, Fether M. Vittrant, Frofessor of Fhysics at the furora University conducted by the Province of France at Shenghai, Chine. Nost students and teachers of science are : uite convinced of the advantage of the metric system. Very meny pould like to see it adopted in this country. In fact there is en associction in this country whose mein purpose is to further the adoption of the system in the United States. The metric system comes to us from France and it moy seem strange that a Frenchman should propose other units. Fother Vittrant, thoughi Frenc's spent his scholastic years under the British fleg having made his philosophy at St. Helier on the Island of Jersey, end his theology at Fiastings in Eingland. Most of his years as a Priest have been spent in China, so he has been able to broaden his vision. We hope his article mey stert some discussion.

A NOTE ON THE UNIFICATION OF THIL UNITS OF NEASURZMENTS IN THE UNITHD STATES, THE BRITISA EMIIRA AND JN CHINA.

The metric system is at present the best and most widely known system of units. It has been adopted by most nations. Hovever it is not used in some of the largest countriescs, for example, the Eritish Empire, Chinc end the United States, which comprise in all some $900,000,000$ inhabitants. We can say therefore, that half of the humen race does not use this system. In view of this fact it is reasonable to ask if it is worth while to extend and develope its use. It mould appear that chis question should be ehswered in the negative. There is first of all an a priori reason. Unification is only to be desired if it means progress thct connot be exceeded. Lverything human, however, is capable of improvement. To seek unification at any cost would only hinder progress. Besides, the metric system has many defects which ere well known to those who heve occasion to make measu surements and computations in the varicus epplications of science. As a result various systems have been formed which are derived from the meter, and it is impossible to get along with one of them elone. Thus we have:-

Original system: Principel " ii. T. S. "
C. G. S. "
meter, kilogran(weight), horse pover,.... meter, kilogrem(mess), joule, watt,...... ineter, ton, kiloweitt,........
centimeter, grean, second--end including t. 0 electric systems.

Prictical zlectricil System: volt, ohm, ampere, etc.
Besides, the division of time is not according to ε decimel system, nor does it fit in with the division of the circle.

A netion should therefore oniy edopt the inetric system if its own units connot be improved in such a wey as to constitute a system more perfect thin the metric system. There are fever disedvantages in improving sometaing which is elready in existence then in replecing it by something eltogether different. Now if pe study the old units closely we find thst they on fom s system wich is preferable to eny otiler. This is not surprising since the C.G.S. units are in general too smell, and the N.M.s. units are too lerge, waile the foot, the ounce, the pound, and the bushel ere cuite well suited to ordinery humen needs. In Chinc there are units similer to the letter, wich however do not have the some velue everywhere. They have the advontige of possessing decimal multiples and sub.multiples. Time formerly hed decinel divisions. There viere twelve hours in the day; the hours hed eight or ten pexts end these jerts were subdivided into $10, \phi \varnothing \varnothing 100$ and 1,000 perts. The division of the day into twelre hours is still used to sone extent in ordinery lenguege and the inupopeen hour is called e little hour.

The system those vtlues ere given herevith has been built up from the folloving principles. e) Depart as little from the old units. b) Keep the ordinary electricel units, or at least their decimil multiples, for the wait, the oin, the volt ind the ampere are really internotionel units. c) Introduce the decimsl division in the messurement of time without interfering toomuch with popular usege. The following units therefore have been adopted:

1) Unit of poter ecuel to 10 vatts;
2) Unit of density equil to the mazimum density of water;
3) Unit of time equel to one hour diviced by 50×100, i.e. 0.72 seconds.
The day is still divided into 24 hours, the hour is divided into 50 minutes instead of 60 , ana the ne. minute is aivided into 100 seconds. This corresponds to the 12 Chinese hours, each of which is divided into 100×100 perts. Upon corquting the unit of length which setisfied these three conditions re find it is ecuel to 52.63802 oms. This is somewhere between the unglish foot and tile Chinese foot. The principel geometrical and mechenicel units heve colculeted in the classicel way, As for the electricel units one tenti ohm hes been adopted es the unit oif resistence. Thus the volt end the C.G.S. unit of eurrent (10 amperes) heve been retained. The megnetic units heve been deduced from the electricel units by meens of electromagnecic induction, the quentity Q of electricity incuced in a circuit or resistance being proportional to the magnetic flux \varnothing vhich disappears: $\phi=$ GR. This method stems more rationel and practical then thet followed in the C.G.S. system. The values of the oher units can easily be computed.

Some observations on the velues obtained will show thet they cen readily be substituted for our present units
Unit of length: Its vilue is about $127 / 8$ inches, or $103 / 8$ inches. che hundredth of this is quite closely $1 / 8$ inch. In China the decimel
-
N
multiples and sub-multiples of che foot have been in use for more tha 20 centuries.

The following axe the names of some of the principal units:
1 chang --- 10 Chinese feet
1 tsun ---- 1/10 Chinese foot
1 fen ----- 1/100 " "
1 li ---.-- 1/1000 " "
There are also very small sub-multi les.
Unit of mass: This is ecual to ebout 1232 avoirdupois ounces $=1123$ troy ounces $=940$ Cainese ounces $=93.5$ troy pounds. This unit could be called a.kilounce, and its thousendith part s decinel ounce. The avoirdupois pound is sensibiy eckel to 13 decimal ounces, and the troy pound is sensibly equel to 10.7 decincll ounces. A decimel pound could be edopted ecuiclling IC dccimel ounces.
Unit of tine: This is ecuel to the period of a simple pendulum those length is equal to about 516 rillimeters or $20 \mathrm{l} / 4$ inches. Decinel clocks could easily be consiructed and they vould possess meny adventages. There would be 24 hours of 50 minutes, each minute containing 100 seconds.
Unit of enguler measure: Greduated circles could be divided into 12 x 100×100 perts. This division would be more convenient than eny now in use and rould resemble the division of time, since $24 \times 50=$ 12×100.
Unit of volume: This ecuals very nearly a bushel, or 9 U.S.a. gal., or $1 / 100$ of 2 cord (128 cu , fit.)
Unit of veloojty: It is meerly a mile en hour.
Unit of force: It is bout the weig-t of 5 evoirdupois pounds.
Unit of work: It is cbout 5 foot-pounds.
Unit of power: 10 watta $=1$ cecawatt $=1 / 100$ kilovatt.
Unit of pressure: This is about 2 miliibars or 21 min. of veter or 1.54 mm . of mercury. stimospheric pressure is eçuel to ebout 492 units. It cen be seen thet it is eesy to estcblish a system of unit. superior to ell existing systems without citnging too much the long fixed habits of $900,000,000$ people.

PRINCIPAL UNITS OF THE AINGICAN-BRITISI-CHINESE DHCIML SYSIEM.
(A. E. C. System)

$$
\begin{array}{ccc}
\text { equation of } & \text { neme of } & \text { veive of } \\
\text { definition } & \text { unit } & \text { unit }
\end{array}
$$

Length
lhe.ss
Time

Surfece	$S=I^{2}$
Volume	$V=I^{3}$

Velocity
Acceleration
Force
Work
Power

I 15

T
$V=L^{3}$
$\mathrm{v}=\mathrm{L} / \mathrm{T}$
$\mathrm{a}=\mathrm{v} / \mathrm{T}$
$\mathrm{F}=\mathrm{Me}$.
$\mathrm{V}=\mathrm{FL}$
$\mathrm{P}=\mathrm{W} / T \quad$ decavat t
$12 \mathrm{7} / \mathrm{B} \mathrm{in}$. 04.9250 kg 。 1252 avoir. ounces
decimel sec. 0.72 sec .
" SG .ft. $10.58572 \mathrm{dm}^{2} \cdot 1.17 \mathrm{sc}$. ft.
" bushel $04.93056 \mathrm{dim}^{3} \cdot 0.991 \mathrm{U} . \mathrm{S}$. bushel
" ft. $6 \mathrm{sec} .45 .4014 \mathrm{~cm} / \mathrm{sc} .1 .015 \mathrm{mi} / \mathrm{hr}$. 63.0575
$2.20257 x$
10^{6} dynes 4.95 ev. lbs. 7.2 joules 5.3 ft . lbs. 10 watts

Fressure	$\mathrm{p}=\mathrm{T} / \mathrm{S}$	
Resistence		deci-ohin
Current	$I^{2}=P / R$	decer-emp.
ilectromotive Force	I=RI	volt
Guentity	$\epsilon_{c}=1 T$	
ceperitance	$C=C / I$	
Wegnetic slux	$\phi=C \mathrm{C}$	
Magnetic rield	$D=\varnothing / S$	

$2001.23 \mathrm{cyn} / \mathrm{cm}^{2}$. 2.06 millibers
0.1 ohm

10 amperes
1 volt
7.2 coulombs
7.2 fereds
72×10^{6} mexwells
87079.7 geuss

10 C.G.S. units
C.G.S. unit

IO C.G.S. Units
0.78 "

> Feiner M. Vittrant, Aurore. University,
> Sisnghai, China.
 gDUCATION, 1924, i, 205. The meterisl is a plestic sold under the tr de neme of "resilite". It contains a mivture of five inert bitumens of thich the caief is miner l caoutchouc. Gilsonite menjeck, petroleum esplazt and otitis neteri:ls ore miked together ind lies ted until the mass becomes unifomm. On cocling, के voletile oil and a large percentige of esbestos fibre are dided end the mixture is then churned until e. rubber-like unifor. paste is produced. Fiesilite is ecsily moulced into iny form ind mey be orked iround pipes end spread. upon e flcor or toble to, vhen it ardons giving e resilient and permenent coating. It is shippec in berrels and mey be kept inderinitely. It is obyeintble in neivural bleck, of tinted red, brom, etc. It is fine for stop ing leaks in pipes the sinks, end for covering the $\mathrm{H}_{2} \mathrm{~S}$ storage tenk. Movever, it tends to shrink and as it hardens it is cpt to develope long crecks; long hecting rill soften it. But the cracks are easily mended. It is unsuited ior organic laboretories since certein organic solvents cissolve it. If it is applied by one's own help ind only o then layer is used the cost is about 5 cts. per sc. ft. Resilite Mff. Cc., Secples Ges Mldg., 122 S. Iichigen Ave., Csicago, Ill.
"Constint i. iter-Level Devices". J. IMDUST. AMD ing. Crimi., 1924, xvi, 1230. (Tvo dizyrolis).

$$
H=B I
$$

$$
\begin{aligned}
& 15=2 \\
& I=2
\end{aligned}
$$

$$
90105
$$

\square
"Constant ajer-Ievel Devices". J. IMDUST. AND ENG. Cilil., IS34, xvi, 904 . (INo dizgrms).

".. Ne: Determinetion of .vesadro's Number". Pierre Lecumte du
 omialis, 192\%, xix, 423. The mess of e single nolecule of Ma oleate is calovittea to be $507 \times 10-24$ fur, inch divided into tire moleculer Teigat 305.04 gives tine sives sdro number e.s 6.003×10^{23} which is in close agreement with Nilliken's vilue of 6.00 in $1 \mathrm{c}^{23}$.
"Oy nic Ring Systeme". A.A. Fib.erson, in J. int. CHici. ioc., 1:25, :Ivii, 540. The m in pur ose of ile हrilcle is ic offer certion rules for the numbering of tiee buous in orncnic ring com ounds. It will be very viluabie viezelore boỉ to teiciers of orgetric cinemistry ES well is to witers. Luxcover, it contichs tae skeletons of the rings of more tikn che hunliek different orsenic ring compounds, both corbocyclic und beterocyclic, this providing e. very inclpikl chit of comperison.
"Crrbon honoxide - A Froduct of Hectrolysis". ...I.C. Germenn, in SCILNCE, lo25, Ixi, 7C. Phosgene is a ekly ionizing solveni, sne Wen solution of, Cl_{3} in posgene is electrolyzed, csrbon achoside and cillorime rre evolved. Whe production of $C C$ by an electaclytic:l wethod is unicue as it hes not veen obtained by electiolysis heretoicre.
"scme fevortble jffecta from u e Mimentar, dministaition ch
 DCCAILCLCGY, 1926, viii, vil. Insulin in one per ceni cl solution hen plecec airectly in we diodenuan of diabetic tients ctusec in some cases on increcsed wler, nce for nd uillizevion of givicose. Its edninistration in enteric czpsules wogetier with Hilic, tiritilo or citilc acicis or $\mathrm{Ne}_{\mathrm{H}}^{\mathrm{H}} \mathrm{RFC}_{4}$ (these acids tere used uo dulay the ection of trypsin) resulted in its absorvtion nd increasec glucose tolerance in scme petients.

 chic secretion of gastric juice cioes noi ocntinue for more then so min. it most and eccounus for scrocely jc ez cent ef tile totsi secretion after e meel. inytiving takn inco ile stomicir, even titer, ceuses bome secretion, but is not proncrtioncl to the emount ingested end hence cen hardly be expleined by mechenics ficcirs. Xentuine or puine
beses were found responsible for the demical secretion. The amount recuired is not lerge, and there is less gestric secretion and less diuresis inen tinis optimun amount is surpassed. Ierge amounzs of coffee in particulor showed this depressing influence. Ceffeine-free coffee did not increase gastric or renel secretion more then did nater alone. Souillon, tec and coffee lecive the stomech soon, within 60 to so minutes, and the accion of bitter conics seems to be elmost exclusively to promote peristalsis. Apprently the motor action of the stomech is more important for heel th than conditions of gestric secretion. hs long as the stomach is regulerly evicuated even hypersecretion does no harin.
"Frob:ble Ceuse of Nicturel Immanity of Iirds/seinst umen Tuberculosis". J. kucleir, in CCBFF. RMMD., 1934, clurizt, 85. A substence W.es obtained from biras which was able to digest in vitro enu in vivo the bacilli of humen tuberculosis. This substance occurs in en inactive sta.te, when it is without action on the Koch Bacillus, but it is feedily trensformed into the active condition. In either sta.ie it prevents the development of tuberculosis vien injected into guine: pizs inoculcted with the Kock Bccilsus. The I munity of biras to tuberculosis is cttributed to the presence of this bacillus-gigesting substence.

> 10s. G.J. ©hiple i.J.

"Nistory of a Double Crgenism". JOUR. HMF. ZCOIOGY, vol. 4l, no. 2, Jen. 5, 1925. In eccount of tiroleptus mobilis, one of the Infusoria. . Pair of conjugating individuels of this species feiled to separeite, underwent reorginizition, end finelly iused io form two mouths, two peristomes, two contracting vacuoles and two sets of inecronuclei. The double organism lived 405 days and underwent diwision 367 times.
"çuentitstive Study of Reections to Light in Amoeba". JCUR. $\not \subset \neq$ LCA\#F/KKP. ZOOLOGY, vol. 41, no. 3, Feb. 5, 192F. Amoebe. responds to sudden increase in luminous intensity by a cessation of protoplesinic flow. The reaction time varies inversely :ith the intensity of the light.
 WD FHYDICL., vol. 40, no. 1, Likr. 5, 1020.
"Growth of muman Eyebill and optic Nerve". JOUR. COMP. NEUR., vol. S8, no. 2, Feb. 15, 1925. The weight of the eye is ε little more thai doubled in pest-natel life, most of this growthbeing made in the first flive years. The growth in length and breedth of the optic nerve in the fetus is directly proportional to the frowtil in the totel body length. The nerve increcses ; bout 60 per cent in length, 14 per cent in dieneter, and 115 per cent in volume after birtil.
"Iypes of bien in the Vellow-Brown nace". fimR. JOUR. FNAT., vol. 35, no. 1, lier. 15, 1926.
"Structure, Function and Regeneration of Seminal Vesicles in the Cuinee Pig". JCur. EXP. ZCOLOGY, vol. 41, no. 2, Jen. 5, 1925. Sperinetezoa were found in very sinall numbers at the base of the vesicle. Iigction of the seminel vesicles of the aduit resulted in atro-
phy, and elinost complete reduction of libido and fertility followed extensive removel (not complete) of the organs.
"irtificiel parimenojonesis". JCUR. INP. ZOCLOGY, vol. 41, no. 3, Feb. 5, 1925. Temperatures wich produce partienogenesis, ceused in the eges of irbecia, Nereis end Cumingia, a coagulation within the cytoplasm of the egg. This wawnth and coogulation appeers to be e. re¢isite $\hat{\text { for }}$ artificicl devedopment.
"Iffects of Phyroid Glend Substances on Frotoplasm in General". BIOLOGICAL SULILIIN, VOI. 48, no. 2, REb. 1925. FIOw experiments and litereture on the subject, the sugbestion is hiede thei trese substences couse hastened developuent end differentiation in eninel end ilent protoplesia.
"the Refracuive Grenule Red blood Corpuncle". AlNAT. Ric., vol. 29, no. 4, Feb. 25, 1925. The final stage in the macuraion of the red corpuscle in men, dog, rabbit and mouse is recognized in fresh stained blood by the presence of ε single, brignt, refrective grenule, one helf micron in diwaeter. In health and while et rest from 0.3 to 0.7 per cent of the reds in die peripheral circulation of men are in tilis stige. These cells sre the ifirst to increcise in the circulation then en increesed production of corpuscles is stimuleted.
"Study of icret:yyroid Glends of the Cot". MkR. JCUR, hutit., vol.
 size end locetion elso vaxieble. Complete peratiayroiacctoiny results İtally :ithin : few deys. Teteny and depression follow removal aliizost immedictely. If tuy-oidectomy is performed, and all but one of the peretinyoids removed, deeth vevelly does not ensue. It is concluded thet the paretinyroids are essential to life.

Laborctory suggestions: ANAT. RIE., vol. 29, no. 4, Jeb. 2E, 1925. "Appiretus and metiods for Embryologicel and Cytologicel fork". "sn Iaproved Tcble for Gross Anctomy". "ilethod for sectioning tine :iaole timan Brain".
12. R.J. RCWilliems S.J.

PUBLICATICNS.

Fether F.\&. Tondorf hes an erticle in the fsxch-april issue of tine MILITARY GNGINMR, entitled "Destructive forces inconcrete Pevements". The BCSMCN PIICI for ipril $4,1 \leq 25$, quoles hin at considereble lengtin on tine North imericen Eariliquaie of Ieb, 5, 1663. The axticle contsins extracts from accounts of some of the jesuit lissioneries. TYCOS-RCC Jisili for apil, ls 25 , publishes pictures of pether Tondorf besicie his new Geliitzin Verticel seismograph end of Eather J. fifcard of Senta Clert, Celifornia, "The Fedre of the Rains", working Uitin his telescope. Tee ception states thet he is studying licrs and the planets, but ss he is in full sumlight and has e screen attached to the eye end of the telescope he is evidently melcing a study of the sun's surfece.
 ing note on the Netionel Comittee on Chemical Leboratories; The liaticnal Research Council has ap ointed a coumittee on the constiuction and e uipiuent of chemicel laboratories. The personnel of theis committee is:-

George I. Coyle E.J., Chiman, Georgetown University, washington, L.C.
c... iover, esleyon university, liduletorm, conn. Lowis : Lettern, Kot inley Technicel Kigla School, ashington,D.C. J.i. P'ethevs, isconsin University, Madison, "is. John G. Svan, University of Zississippi, University, Jiss.

Ine comittec will be gled to receive builders' plans, specifacetions, blue prints or leboreiories for boch high scioul ind college, recuntly erected or in tine cuurse of construction, new idess with reserd to systems of ventiletion, of dranece, types of lebortiony furniture and hen, efficient liboratory paratus.

Fetiler a.C. Fiillips end an. F. . doton he ve articles entitled "funemiticel aystificetions" in the April number or the Lithumetchas DUITuTIIT of the issotrri provence.

PCFULAR ASTAONCAY for kuril, IS2b, hes en account by Zather E.C. Fhillips of cocistock, of tie cbservetions mede :t the :oocistock Observetory during tize solir eclipse of Jan. 25, 1925. Ieiner F.j. Jrook of eston iso has on article in the some number desoribing the eclipse as it :zs observed at pairviev, Veston, Less.

We received not wong ago a copy of the PrCChumiligs of the Jesuit jucetionel ..ssociation of the iissurisi Province. It is schole. 3 - कnk interesting.

Fother Tondorf sencis us the follo ins references to publications of interest to geolo,ists:-

Isostesie und die urseccillicine Ninkeit von Gebirgsbiluung und Vulienismus; Dr. C.G.s. Senaver. Iubl., Gebrueder bornirceger, Derlin, Germeny.
..ufbeu des Irdbells; Gottlob Linck. Fubl., Gustev Iischer, Jene, Gerineny.

Die Seismiscie Iodenunruine; Dr. D. Gutenverg. Fubl.,
Gebruecier Borntrceger, Derlin, Germany.

(ULRY.

Te have received the following query foom eformel frofessor of E2ysics tho is now studying theology. Se shoula be glod to beve some relies to the cuestion, especialiy from those vho have taught Faysics according to the old and new schedules.
question: Fow ac they do it now?
Since our return to the benches, report lass it thet the numDer of semester hours in the fuysics course hes been curtailed, and thet decnenics and Prysics are no covered in one year. will some ouli,ing Professor in his "epere" t.me tell us hov this con be ecomplisined? fothinks ए.e found less tian enough tiae for Finysics in one yeer. To cad echenics seems to be daing the lest strem. Temporis Acti.
A. JøSUIT INTLRNATICNIL S凶IBOLOGICAL ASEOCIMTION.

Lir. Jou. Lynch i.J., of Velkenburg, sends us the folloring suggestion of interest to our seimologists.
"Your reference in the lasi Dulletin to the Geopliysiccl deet-
ing in Spain, and the work of Ours comended therect, bids me unbosom an idea that heas long been rankling--e desuit Internetional Seismo$\operatorname{logical~Association,~vith~en~intemational~bulletin~for~the~seme.~}$

We have belt of selsaic suations in idesl feographical situations-- N. and S. Nrerices, verious parts of surope, Ausiralia, Climine, The Philippine Islands, etc. Ind thet these stetions are not idie is readily seen from the published ark of ours done tiereat during the past year or so. Spain reads of the work of Facher NavarroNewach in the paces of IBirition, Chine has published Pather Gerzi's excellent work on Kicros, the wican Smisholcgical bulditil hes kept us in touch vitio the revoluticnaxy work thet is being cone by Father Lacelwane, etc. hil Invernational Bulletin would assemble this, to a certain extent, isolated :ork, and afford e recular report of tine work being done by Curs, thus miling for cooperstion and even betier work. In seismology the heve \therefore field to ourselves, owing to our peculiarly advantegeous geographical distribution--but it is net my purpose to yaste your space by repeating what is known to all. The idea, of linking up our stations is not s new one, but the success of tine Hissouri and our own Provinciel SCIANCD BULLETINS seems to viarient a reconsideration of the cuestion. Does the discussion of such e propesition ocme within the scope of your paper?

To start tine bell roiling at home, may we not ask to be kept more in touch with our orn Frovinciel Activity in seismology? Canisius, Georgetown, Fordham, Holy Cross end the P.ilippines heve en excellent mediun of cooperation in the fulletin. Could noi Fother tondorf's idec of e: centrel burecu be put anto effect in cur Province? Photogrephic reductions (post card size) could easily be exchenged for the comparative anelysis he suggests. Such reductions edimit of eccurate reading with ε megnifying giass. They adoic the greater expense of the necessciily lerge contecto prints, and the possible loss of original records through postel transition.

Lest the last remerks be at all misconstrued, let me hasten to add that their tone is not at all one of adverse criticism. On the contrary, it is the brilliant notice our Province stetions heve been receiving here in curope of lete, thet prompts the suggestion of cooperation through the velusble medium et hand in the Julletin. The result cannot fail to be greater encouragement, grester progress and greater success.

To take the rewent quake of Feb .24 as in example of cooperetive work: the epicentre of 59 deg . IT. and 149 deg . W. ves suggested. (Oxford University very kindly sent us the lordhom Readings along :ith their own.) Suci en epicentre occursed on Mov. 29, 1920. Fies any one compered the records of 1920 and 1925? Are there eny speciel similaxities or differences to be noted? "

通. J.J. Iyncia S.J.

INFORMATION WANTED.

One of our readers in the Heer Lest, Tether J. Slempois of the Province of Lyons, writes to tell us hos interesting he finds the Bulletin. Fie is Frofessor at the ipole sranceise d'Ingenieurs at Beyrouth in Syria. Iike sc meny others of his brethren he served in the French Army during the Ver, being part of tine time an instructor in raio and radio ensintering in an army school for American Officers. In connection with Father Deppermann's article on Permelloy he c.sks for information on the use of this materiel for the cores of high frequency
transformers. Perhaps someone cen enlighten him. Through the good offices of Proiessor tmes of Johns IIopkins, Father Deppermann wes able to obtain some samples of Permelloy for Fether Blempois from the sell Laboratories, hpperently it is not in the merket yet.

Mr. Joseph Lynch S.J. of Valkenburg asks for information about film lantern slides. He wishes to know ehere they cen be procured, what their efficiency is and if there is any special technique to be followed in making and hanaling them.

The following has also been submitted for the consideretion of our Astronomers: "Anowher thing I am puzzled ebout is the shortening of the day. In the peper, the tiree of sumrise and sunset are given. During September, for a period of siy or seven days at a time, the sunrise time remains the same but the sunset time changes a minute ecrlier each day. Thex the sunrise time chenges a minute or two later and the procedure s 0 es on 2.5 before. These ere the Geodetic Survey figures (whether U.S.G.S. or Philippine G.S. I do not know)".

Mr. P.H. Yancey S.J., hor a. theologian at One, Spain, sent us the following note, which however did not find place in our lest issue: "Father Jose Labura, Professcr of Biology and Experimentcla Fsychology here, who ettended the cosmology Conference in Rome, is going to Venezuela in Felmitry to gite a geries of lectures on the subject of his recent resec ch,-- the influence of physiological factors on animal behaviour. Se hss giver these lectures with great applause before the principul medical faculties in Spain."

Dr. J.F. Norris, Professor of Chemistry et fassechusetts Institute of Technology and president of the American Chemical Society was recently a guest of the Faculty of Foly Cross Collere and gave a talk to the students of the Depertment of Chemistry.

JUST SON RGEINDERS.
The Dditor solicits not articies of g eneral interest for the Bulletin, but also accounts of scientific activities in our Colleges end High Schools, and references to publications by or concerning curs. There is en old seying which expresses e cardinal principle of modern advertising, nemely: Je mino blows not his own horn shell not have the seme blown for him. hile it mey not become us to blow such horns for ine sake of the music or noise they produce, en ococ-sional gentle blast for the good cause mey interest and inspire subscribers to the Eulletin.

00000
Keep next summer's Feeting in mind and look up some subject for d. paper or for discussion.
L. D. S.
\qquad

 $0-2+20+2$ Be yuf yatwolioz bu? :478 mon oostai $-3-2 \frac{8}{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

