A. M. D. G.
 BULIETIN
 of the

 ANHRICAN ASSCCIATION OF JESUIT SCIENTISTS

 ANHRICAN ASSCCIATION OF JESUIT SCIENTISTS}
(Eastern Section)
(For private circulation)
Vol. II, No. 3. Weston, Mass. Jenuary-February, 1925. P.26.

THE TOTAL ECLIPSE.
The total eclipse of the sun on Jan. 24 th was the outstanding scientific event of the pest month. It vess very fortunate tiat the path of totality passed through such a densely populsted region in the northeastern pert of the United States. The press and Radio gave great publicity to the event, and rarely has as phenomenon of nature excited so much interest. By an oversight the date of the eclipse in our last Bulletin was given as January 25 th, but ve ere sure that no one was misled by it. k number of astronomers with instruments for special observations assembied at the observatories at New Iaven, Middleiown and Poughkeepsie which were quite close to the middle of the path. The mein objects of inouiry seemed to heve been to extend our knowledge of the corona and of the flash spectrum and also to obtain exact data regarding the moon's path. A. lerge number of radio amateurs were enlisted to study the effect of the eclipse upon the intensity and range of radio signcls. lost people were content merely to enjoy the wondrous spectacle, and laxge numbers journeyed to the nearesti region of totality by train or auco. The New Haven R.R. sent 8 specisl. eclipse trains from Boston on the moming of Jenuary 24 th, $-\ldots 6$ to Westerly, R.I., and 2 to Willimantic, Conn. Several of our houses were well within the path. Some of the science professors of our New England colleges observed the eclipse at Keyser Island. We have received the following eclipse notes:-

WCODSTOCK.
Saturday, January 24 th, the atte of the eclipse of the sun which was total in New York and other parts of Northeasuern United States, was cold and clear at Hoodstock so thet we were enebled to observe the eclipse which came to within 5 per cent of being totel here. The suinss image was projected by means of the old equatorial telescope on e white screen so that all those who were brave enouch to bear the biting coll might wetch the progress of the phenomenon. There vere about forty spectators for the earlier phasees of the ecilpse including first contact and mid-eclpise: as the lasi contact occurred during cless time, very few were able to be present. Ir. Blatchford ceme out to Woodstock from Baltimore to observe the eclipse and took a number of photoziapis. The sidereal clock was compared with the time signels sent out by redio from Arlington at 8:40 A. If. and Noon, Eastern Stenderd Time. The time of first contact was noted by meens of ε. stop watch which was immediately compared with the observatory sidereal clock; the lest contact was noted by means of the observatory chronograph and al so by means of the stop watch end observetory clock. The predicted and observed times were as follows:-

 bedscyseng gevvisul wb

 20.

 THishatikit 2

 70.

 2 2

First Contect Last Contect Duration

Predicted	$7^{\text {h }}$	55^{m}	29：	10	22		2		8.7
Observed	7	55	45	10	22	23	2	26	38
Difference			－15			1			30.7

The observed times，especielly of firsi contect，mey be in error by several seconds．The difierence，hovever，between the predicted and observed times cinnot be exploined in whole by errors of observa－ tion，end it seems certain thet the eclipse begen somewat leter and ended somewhet eerlier then was preciicted for this station．

> Fether L.C. Fhillips S.J., Woodstock College.

POUGFKKHPSII．
The eclipse wes totel and concitions wexe fivorable．Juther Villigns directed his geze wo the lortheest until totelity occurred． It was very striking to see the eree of darkness bordered by light on the North and South．The shedory brads pere distinctly seen pessing over the show．The corone eppeared es e．ring of beautiful white light suspended ejeinsi é erey background．Iuring the iotality severel ple－ nets eppeesed quite distinctly sevelel degrees from the sun．To me the most striking f＂eaume ves the sucdenness vith wich the totality begen end ended．The corkmess becrae very perceptible during the last IC or 15 minutes，but the totslity cane on as ix the moon hed been pushed suadenly in froni of the sun end it ended just as abruptly．Us to the time of totclity a smoked bless ves necessery in looking at the sun but curing tile eclipse one could lock ei tine corona directly witil the neked eye．It was my impression thet during the totality there Uहs more light then on a brijht moonlight night end the．t it lies much more diffused．During totality our dog＂Kusty＂berked cuite vigorous－ ly．

Nether W．C．Repetti S．J．， st．indrev－on－Itudson．
ニニニッニッニニ

BUFFRLO

Zuffolo seemed to be the only place of uny imporuance in the path of totelity not fevored by even c gimase of the total eclipse．Ai sunrise the sun appeared as z．ball of fire ：itin ell indications for e fevorable observetion，but just berore the eclipse begen e．heavy benk of clouds obscured the sun，rendering eny measure：ients or photographs out of the question．As if to prove thet the eclipse wes bone fide， the partially covered sun peeped out becineen rifts on three occasions after totality，but even these were imperfect．No photogrephs were secured．

A slight drop or temperature of two or three degrees ws notice－ cble di totelity，The tife of its becinaing or end could not be de－ termined accurately，but the speed or the edvence and retreat of the shadow vas all thet hed been predicted of it．However，the darkness， which seemed to be drawn over the city like a pall，was not sufficient－ ly intense to prevent reading a watch，the ereat quentities of snow doubtless being responsible．

Radio signels from WGR buffalo become ouite weak curing the ec－ lipse，recovering their usual volume as the sun became brighter．This

oxicute

 -berwand

Jen．－Feb．， 1925.
seme condition was reported by a number of the boys who had mede simi－ ler tests during the period． One investigation，independent of visibility，was the determina－ tion of a possible varietion in the strength of the eexth＇s magentic field．We may have something to send you later regarding the results．

> Father T.J. Love S.J., Cenisius College.

```
#ニニ#:ニニ
```


WESTON

The philosophers at Fairview，Weston，Mess．，followed the eclipse with great interest．We were $\leqslant 2$ miles north of the path of totality end the sun＇s disk at the meximum was 99 per cent covered．The morn－ ing was cold and clear，whit the exception of a few clouds which how－ ever aid not interfere very much with the seeing．Several smell tele－ scopes，smoked glasses and photographic negetives，and two surveyor＇s transits，by means of which the sun＇s imege was projected upon soreens， were employed．No attempt was made to determine the tirnes of contacts， the first of which occurred at about 8：05．Thermometer and berometer readings were made at intervels froin 8：00 A．M．to about 10：00 A．R．， the former by Nr．H．J．Sullivan，the letter by Mr．R．E．Ancble．The temperature at the first contact ras $\quad .3^{\circ} \mathrm{F}$ ．It then dropped 1° ，ris－ ing again cifter the maximum ahicin occurred at $9: 1 \%$ ．The barometer fell during the eclipse，hut as it droped cuite steadily during the whole day it is not likely thet eny speciel significonce cen be ettach－ ed to this fact．The dermess at tine meximum wes less then was anti－ cipated，the snow on the giound helping to diffuse the light．It was greatest toward the nortiwest，and resembled thet preceding a storm． The cresent was not fine enough to show Baily＇s beads．A replica grating held before the eje clearly showed numerous curved lines in the solar spectrum．Brother Conroy reported that as the light dimini ished his chickens stood about ialy in their quarters but made no at－ tempt to go to roost．Pigeons vere observed to return home．The dark－ ness was sufficient to render the planets fisible but on account of some clouds about tize sun only Venus wess seen．

Various attempts were mede to obtain some permenent record of the eclipse．Sketches were made by liessrs．E．S．Drock，A．V．P．Dowd，and J．Killenn．IKr．J．J．Dolan mede some photouraphs wich a small hand cemera．Mr．T．D．Barry obtained pictures by ettaching a sme． 11 camera to the eye piece of the telescope of a surveyor＇s trensit．A series of photographs were also made bj lessrs．L．C．Gormen and J．C．Nurray． A beam of sunlight was brought into tine derkened science lecture room in Bepst hall by means of a Porte－lumiere with a total reillecting prism．A single lens $21 / 2 \mathrm{in}$ ．in diemeter and of ebout 12 ft ．focel length wes pleced in the peth of the bean with an aperature of $1 / 4 \mathrm{in}$ ． and a grarlex camera with the lens system removed wes placed et its focus．Films were used end a few preliminery pictures were made and iminealately developed in order to determine the best time of exposure． Solar images 1.16 in ．in dicmeter vere obteined．

THE LAWS OF MOTICN．
（The following paper was read at last summer＇s Ealtinore meeting by kir．F．W．Sohon S．J．，tho was professor of Chemistry and director of the Seishological Observatory at Fordham University lest year，and is now studying theology it Valkenburg．）

Jon.-Feb., 1925.
binstein's mechenics is strange, bui the mechenics of mewton when dressed up aitter the curious fashion set by ininstein is scarcely less wierd. Ve propose to find out how much or linstein's novelty is due to his doctrine and ho: muci is really due to his menner of presentation.

Let us begin with the time-space continuum. We need tiree variables x, y, z, to determine a point in spece, one verisble t, to determine an instant in time; honce to aetermine a coincidence, which occurs when two things are et the sane point at the same instent, pe need four variebles. We can, therefore, picture the flux of events as a graph of four dimensions. Cf course, we cennot see ell lour dimensicns at once---you cannot see the opposite sides of a house at once ---but we cen take then two or three हt is time es we need them. Ihis picturesque concept of the universel flux of events in which by c. concomitent phontasm of en imutable four-dimensioned greph the local and temporal relations are emphasized iv is proposed to convey by the designation the time-space continuum.

If we choose sone point to be at rest, that is, if ve measure its position in such e. wey thet at different times it elways has the some position, then tinis point ve mey picture to ourselves es a streigi line or trece perpendicular to our x, y, and z axes. This trace we cell the aris of rest. Any point whose irece in the time-space continum is parellel to the axis of rest vill appear to be a point et rest. If the trace of the point mekes an angle with the exis of rest, then its position with reference to the rest point will be different at different times, and the point :ill be in motion. The apparent velocity of the object will be ecual to the trigonometric tangent of the angle which its trace makes with the aucis of rest. If an object has uniform motion in a struight line, its trace will be a. straight line. If the motion of an object is accelerated, its irace vill be curved. (Illustrations)

The first law of motion tells us that unless en object is being acted upon by a force it persists in a state of rest or in a state of uniform motion in a straight line. In fact it is quite impossible either a pirori or a. posteriori for us to say that eny one given object is zbsolutely at rest and some other object has uniform motion in sestraight line for tlie simple resson thet these tro states have identical physical properties. Mais means, then, that instead of teking our originel trece es a rest auis, any streight trace might be chosen instead, and shovild this be done our old rest point rill have a uniform velocity in c. struight line, viti. reference to our new rest axis. before the edvent of Linstein this fact used to be stated by saying that trenslation is relative. The nev way of asserting the t thing is to scy that the rest axis can be roteied in the time-space continuum.

We have imesined our rest axis to be perpendicular to the x, y, end z exes. These axes are space axes or exes of simultaneity, because ell coincidences occurring àt cifferent points along them are simultaneous. If on axis should meke an engle other then 90 degrees With the rest exis, tile trigonometric tengent of this engle rouid be a finite quentity. As the tengent or tinis angle is in every case the velocity of the point, an axis et eny engle except 90 degrees with the rest axis vould be the trace of E point moving with finite velocity, and :ould thus represent positions thet are successive and not simulteneous. If necessarily follows thet in eny system of mechanics en axis of simultaneity must alweys be perpendiculer to the rest axis, however the letier axis be chosen.

 +305 tesing

 $2+2$ than

 2.2

 * $2 \cdot d+2$

Here we heve e cruciel difficulty. The exis of simulteneity must be perpendicular to the rest axis in each case. If the axis of simultaneity does not rotate when the rest exis rotates, then we heve one axis of simultaneity perpendicular to every rest axis in the same plane. This contredicts the theorem which says only one line through a. point cen be perpendiculas to ε given line. If mey be enswered, hovever, that time and spece are essentizlly different, end thet there along cne axis are measured intervels of time, end elong another intervals of spece we heve no light to essume that Luclid's geometry vil. hold. In fact, it is asserted, the geometry of the time-s ace extension is non-euclidean nd i. such e wey thet every triangle having one side elong' the simulteneity axis is en isosceles right triengle heving two right engles and one acute cangle. This stertling postulate is the essence of the clessical, thit is the lievtonian mechanics, and cen be sumned up in three words: simulteateity is ebsolute.

It is exsily seen thet the geometry of the time-spece continum must necesserily be non-euclidean. In the first plece if it were euclideen and ámin vere to walk v_{1} miles an hour on a trein 8oing v_{2} miles en hour, ine resultent velocity of the men should be given by the formule for the tengent of the sum of two angles shoving that the time-space continuum of clsssical mechonics must be non-euclidean. Furtiermore, iff e euclideen system there vould be no recl distinction between future enc. past. Let Pecer and Joh be born on th: trins moving very repialy in opyosite directions, end let eech die on the seme trein on which he wes born. Fieving incicated these four events, let us toke John's trece for the rest axis, end we find thet Feter dies before he is born. Cr sup ose Andrew lents to undo something he did yesterday. Let him boird e repicily moving train Whose trece is nearly perpendiculer to his old rest aris. If he cen now run fast enough he may be able to throw his trece beck into the second quedrent end thus be cerried into thepest. Cn cocount of these and similer considerations we may say thet it is certein thet the geometry of the time-spece continuum is non-euclideen, anc the only cuestion will be whether it is to be non-euclidean wie way jevton scys it is, or vhether it is to be non-euclideen the way minstein sejts it is. Instead of assuming simultaneity a absolute, -instein essumes on the besis of experimentel evidence which he hopes ill be produced that the vilocity of licit is bsolute. It cen easily be shown thet if a perellelogrem is mede whose sides ere perillel to the treces of the backverd and forwerd velocities of light, rest end simultaneity will be the diegonels of the perelielogrom. In tilis wey it can be shown thit as rest rotates, the velocity of light being inveriant, simulteneity elso rotates, but alveys in the opnosite direction. There is e diffeient axis of simultaneity for each rest exis, but there is no confusion of future end pest unless soinetling cen be found to travel fester then light, and in such a case the whole binstein systern fells to the ground. Linstein end Newton esree in celling for e non-euclideen time-spece continuum, and in postviating en absolute orientetion in this continuum. In tie Linstein system this ebsolute orientetion is assigned to the trices of tie becluierd end formard velocity of light and the axes of simultincity rotete between taese treces. If ve inagine these two traces pinched together until they become one and the same straight line, :.e heve the Newtonien system with absolute simultaneity.

One of the remaricecble properties of rele.tive simultaneity is the shortening of objects es their ppeed increeses. TMis is due to cutting the traces of the extremities of the length on a bies. if the
time-spece continuum were euclidecn en object would be lengthened in tie diection of motion because the perpendiculer is the shortesi disuance betweentwo pereliels. In the instein system the perpendiculer is the longest distance measured along i. streight line between two parallels, and hence tile man who is at rest with respect to the object finds it longest.

Passing on now to the second lea, we wish to show thet the varieble mass of Linstein is due to a faise enclogy between the levtonien and the Linstein mechenics. The seoond lew says thet the rete of chenge of momentum is proporitonal to the impressed force, or in the languege of the celculus

$$
f=a / d t \quad \text { (momentum) }
$$

In the classical mechenics the momentum is ecual so the velocity of tie object muliiplied by some constint, $1 . s$ tinis constent happens to be inverient and eudative it is necessarily proporiional to the emount of substance in en object, and therefore b,ptly called the mass of the object. For the sake of simplicity it is usuel to perform the differentiation indicated and we get the simple.form

$$
\hat{\mathrm{I}}=\mathrm{d} / \mathrm{dt}(\mathrm{mv})=\mathrm{m} d v / a t=m \varepsilon .
$$

...s this happened to be tine more familiar statement of the second lew, 山instein pponosed to use it for his definition of mass. As it gives rise to ε difficulty it is better co srite hae equation in e. slightly eltered form so as to separate the tangential and centripetal accelerations

$$
f=m d v / d t=m d / d t(v u)=m(u d v / d t)+m(v d v / d t)
$$

where $u \mathrm{dv} / \mathrm{dt}$ is the tangentiell and $v \mathrm{du} / \mathrm{dt}$ is the centripetel ecceleration.

In order to keep the principle of conservetion of linear moinentum, insiein hes to sive to the monentum en expression as follows

$$
\text { moinentun }=m_{0} \nabla / \sqrt{1-v^{2} / c^{2}}
$$

Seperetine the compenents and differenticting we eet

$$
\begin{gathered}
f=d / d t\left(m_{0} v / \sqrt{1-v^{2} / c^{2}}\right)=d / d t\left(m_{0} v u / \sqrt{1-v^{2} / c^{2}}\right) \\
=\left(m_{0} /\left(\sqrt{1-v^{2} / c^{2}}\right)^{3}(u d v / d t)+\left(m_{0} / \sqrt{1-v^{2} / d^{2}}\right)(v d u / d t) .\right.
\end{gathered}
$$

We see, therefore, thet in cioosing $f=m e$ for his defining equetion 山instein will heve one coefficient for his tengentiel accelaretion, and a_{0} different coefficient for his centripetel coceleretion. Fe solved the difficulty by introducing tio messes, a lonsitudinal
mass equel to

$$
m_{0} /\left(\sqrt{1-V^{2} / c^{2}}\right)^{3}
$$

and a trensverse mass equel to

$$
m_{0} / \sqrt{1-v^{2} / c^{2}}
$$

Einstein's mess is no longer bhe mecsure of the amount of substance in en object, though it still measures the inertic. of the object. fiad he

Cefined it from tire momentum ithout differeniating it would have be c. definite scaler property of the moving system, but taken es it stenk it is a peir of coeriticients for a methemetic.l equation.

There is hovever a much more fundamentil objection to finstein's procedure in choosing his derinition of mess, in ws mich as i coes not really follow out tiae enalooy between the Newtonien enc the winstein systems. If we dre.. the triengle of differentiels for the Newtonian system instead of having $d s=\sqrt{d x^{2}} \neq d t^{2}$, ve $\mathrm{cet} d s=d t$. Ihis means that the ecceleretion

$$
\varepsilon=d^{2} r / d t^{2}=d^{2} r / d s^{2}=c \text {, is equel }
$$ to the curvature of the trece. e ourht, therefore, to rite the second len $f=m \mathrm{me}$ if we wre to ineisi on tive concept of the ti.ne-spece convinuum.

(To be continued.)
I. I. . Solion S.J.

WARIKIIG II BIOLOGY.
In connection ith the system outlined in the last issue of the zulletin for caecking l:boretory :ork in biology, ir. fecrion evolved a speci.l marking system. is metiod ol siving turks vas basec strictly on the liboreiory vorls and proved very setisfictory to both instiuctor end student. The sjstem sounds rether coinpliceted in e description, but cotuc-lu is simple encugi. It enebles the teccher to Bive a true mark without ricking his brins when correcing the drowings.
is mentioned lusi time whenever e section of work we.s finisl. ed the student must call tie instructor chd identify for him the pert. dissected or studiea, inu answer s siort quiz. In the course of i. period e student usuelly oives one ci t.o identifications, Elthotigh chere mijht occesionclly in ε. very difficult dissection such as the vego-s,mpetinecic system, be none, and egein in eesier vork I we hed ce higit as four identifictions from one men in a single period. At eich identilication the student is siven 2 merk of 6 or less ecocraing to the thoroughess and skill of iis ciissection, plus \& or less cocrainy io the ecour oy of his icientilication and bresp of the metter. The ratio of 0 to 4 rould be inverted in ceses where less skill vas recuired but more effort must be ewpended to urderstand the tork done. This wieris wes immedi.tely jotied down on the instructor's check slip. hue for the idenuifiaetion of the hepetic portel system vould sppeer : murk of $5-4$ or $5-0$ or $3-0$ or often $0-4$, etc. the mark never iot lled more inen 10.

When hen the daraings, ere corlected, twe instructor in consulting his check slip to see in this perticuler piece of work had been checkea, sets time merk fiven in the laborsiory. If tiae dreviing is setisfactory the merk cen stend, but if slopyy or incorrect, one oi tio points more will be cieducted. This mark is tion entered in the record for the month. In the event of more then one identification, the nark entered in the record should be the meen of these given in the laboretory.

The edventige of this semingly compliceted system of merkir
lies in this. mpe student is merked strictly on his vork, not on his drawing, wich only too often, in spite of the greetest sefeguirds, is e direct copy, or st leasi taken by memozy from some book. End when an instructor hes twenty or more uncer his supervision it is no easy metter for him to remember just what the work of eech student was wort The arewing is too apt to be the deciding factor.

 aex
 (2)

 20
 \&2

 2

 crobayourn f wimith an hat objug

THi GENER:L Chilistry COURSE AT THIE ATLNEC DE WNILA.
There are at the present time three courses being conducted in chemistry at the fiteneo de lionila, nemely a course in General, 2 course in cuelitetive, enc a course in Organic chemistry. Those who have to take the course in General chemistry are the Preshmen Fremedical, Sophomore A.E., Sophomore B.S., and Sopho, ore Fre-law students. They pursue this course for a thole year, during which they heve two lecture periods and two laboratory periods every week, thus giving theri two hours of lecture and five hours of laboratory each week. The leboratory periods last for two hours and i half. The reason for meking the laboratory periods so long is that we desire to have our course correspond es closely as possible with the course given by the Government University in Menila, in which they give tr.o hours of lecture, one hour for ε test, end siz hours of leboratory vork every week for ε whole year. Trus the Government University devotes nine hours each veek for a. whole year to Generel chemistry, while we e.t the fteneo give seven hours a week for ε. whole yeer to the seme subject.

The text book used in this course is lewell, and we cover the whole book, devoting two lectures to \& chepter as a general rule. The leboratory manu:l used is also llewell's, end from the experiments contcine. in this monual ve select 150 mich ve require each student to perform in a setisfectory mener before well will credit him with four semester hours in laborstory :roris.

Thus our work in Generel chemistry at the Ateneo is exectly the same as is performed by Colleges in the Steites, and sithougir We do not ellow as minh time for tilis course as they do in the Government university at lianila, still we accomplish just as much work. This is due to their careless way of supervising the leboratory vork, for elthough they sey they require cbout 220 experiments from NoPherson and Ifenderson's lenuel, yet I know from actual examination of reports of their students thet only ebout 150 ore performed. The reason thy their students cen get credit without actuklly performing the 220 experiments is thet they skip meny without being detected,-- of course their last experiment is numbered 220, but there ere many missing in between. To avoid such en oversight we at the i.teneo keep a. chert on which we check off the woris of exch student. our reeson for insisting on ε. definite number of experiments is to insure four semesters of rork being done by ecch student without having the bother of checking up the late comers, the absentees, or those who run out for e smoke, eic. The one objection to setting a. definite number of experiments, is thet the students will have the one desire to get then done es cuickly as possible rithout much thó ${ }^{\prime}$ thought of what tiey are doing. In fisct at the Government University several students copy taree or four experiments and hend then in without even attempting to perform them and thus they get their credits. To avoid this difficulty we do not ellow the students to hend in two or three experiments at the end of the leboratory period, but we keep going around the laboratory collecting their experiments just es soon as they finish one. Whet ve sim to accomplish is first thet eech student should actually every experiment himself, secondly that he should write it up neatly and correctiy, and finally that he should understend the experiment thoroughly. To obtzin these objects we tell the students thet just as soon as they perform en experiment they are to write it up, study it from the text book, and keep their work till an instructor comes around to their desk, when they hend their report to hian and show him their ectubl work. Then the instructor corrects

$$
\text { Jan.-Jeb., } 1525 .
$$

the experiment at once, examines the work, and cuestions the student to see if he understood what he laes done. If all is setisfectory the instructor mekiks the grade on the report ance puts his C.K. on it and retains the experiment which will be stamped, entered on the chart and filed avay after the leboratory period. If, hovever, the student hes thrown away his work he must repee.t the experiment cit once; if he has not written it up correctly he must rewrite it at once; if he has his work and written it up correctly but does not understand it he must study it at once from the text book.

This systen does not preveni e. stecent from writing up his experiment outside of the laboretory nor from copyins enotiner, yet it certainly makes him do t.2e experiment himself and understend it, vinich aifter all is what we are after. However, Henever se see that the experiment miss copied we terr it up. Lrue, this system takes time, but l.e consider it time well spent and not time lost eitiner for the student or for the instructor. Even in large clesses this system :ill :ork very smootily, as the writer hes used it clso in Eoston College. According to this systen it sometimes heppens thet e. student hes completed two experiments and e.ll his apperetus is tied up, and he can not 30 on to the next experiment, nor cen the instructor come to him as yet. In such a case the student goes to the instructor and tells him ebout it end then the instructor will come cit once, quickly examine the iork ena determine whether the siudent kes really periomed the whole experiment, end eitter putting his secret mark on the report returns to the former student. Then the other student iney throw amay his work and staxt his next experiment end when the instructor finally reaches him, the instructor $i l l$ see the mark indicating thet the t.ork was satisfactory and so will only correct the report and exemine the student to see if he understood the experiment.

Frecuently during lectures, five minutes ere given to problem work. The student merely puts down the ecuations and the different steps without actually working out the answer. Once a week the chemistry note book is handed in, conteining en outline of the tvo leccures, which was usually pleced on the boerd before esch lecture, and also the cuestions and answers which the student makes up from the outline and the notes he takes in class. Sesides these questions, problems are usually assigned. These note bocks are greded end the merks are kept in the instructor's mork bock. Thus from this merk book and the leboratory chert it is very easy to mike up the monthly marks of eccli student.
s.r. H.I. L.cCulloubh S.J., Ficodstock College.

The two preceding papers together with those by the same authors in the last Bulletin are of interest because they bring out some of the specicil problems met with in tecching science in the philippines end the methods employed in solving them. They should prove helpful not only to those who mey be called upon later to take up science work in Our distent Nission in the Far Lest but diso to those teaching here in the United stetes. We hope to receive other pepers on the science courses in Colleges outside Cur home Province.

A SIMPIE DI LONSTRATION APFIRATUS FOR SHCNING TIAT PATHS CF INE ALPHA PARTICLISS. Designed by Father Th. Wulf S.J., of Velkenburg.

The apparatus is an adaptation of Wilson's Condensation experiment (with improvements), to class room demonstretion.
(2and

 20.
 -0\% shan

 - J cábu2a ísat

THLORY. I. Phen supersaturated air is ionized, the water vapor condenses around the ions as nuclei and a fog is formed. 2. The alpie perticles (helium) which are emitted from radium compounds trevel several cins. tirrougin the surrounding air before veing stopped, icnizing the ail es they pess tirough it. 3. If a radium compound is placed in superseturated air, the ions left by eacil emitted elphe perticle in its peth, ceuse the weter vepor to condense, and the wake of tie elphe perticle becomes a line oi fog.

APPARATUS. K is the condensation cheaber containins the radiosctive selt on the necule \mathbb{N}. This chamber cin be cut off conipletely from flask I by tuming stopcock H. At T in flask II we have a three wey stopcock conneciing the ficsk to en exhcust pump or the free air at will.

NiliPUL^TION, WIth stopcook F closed, the air is exheusted from Ilask
II until the water in flask I sinks from a to \bar{b}. If stopcock H be now opened rith e quick motion of tine hend, vile air (already ve.ter satureted) rushes out from the condense.tion chember K, the sudden expinsion of the remaining eir cousing it to cool and the tieter vepor condenses on the ions left in their trecks by the slpite perticles rediating from the needle point I 。 The letter vill appeer as the center of numerous streams of fog, If wie room be darkened end a strong beam or light projected thrcugh the side of the flesk K, the fog ptx streams can be seen beautifully through the end of the flask. If ilesk II be now connected with the air again the ve.ter returns to \mathcal{A} and the experinent can be repented. The fog strecmers shoot out from the needle point just es suon as the stopoock Hi is turned, Nence the room should be derkened etc., before this last stroke of tine experiment is performed.

DETAILS ON CONSTRUCTION, The Apperaitus hes been put on the morket by Lessra. Leybold of Colone, but the deteils of Tather \#ulf's home made epperatus are as follows. Flesks I and II are about 1.5 to 2 liters in volume. By merking levels A and B on flesk I the scinc expension cen be assured esch time, hence once a suiteble expension hes been found to work, it con elwijs be reproduced. Stopcock II should acve en opening of it least 2 cm . to allov of free expension. The condenseition chember K is an old liter flask theithed coine to grief. The eages were smoothed off end a glass plate 3 or 4 mm . thick replaced the bottom. Eefore secling (with pitch or sealing wax) this gless plate, the follo ing cetails must be inserted in the ilask. To remove the ions set free before expsnsion, en electric field is necesscry, about 100 to 500 clts (Bbctteries mijht come in hendy). Father wulf uses a leyden jer charged by a. fevi turns of en Influence machine. (in indicator cen be connected in perallel to insure the presence of sufficient charge). The glass plate S constitutes one pole of the field, the conuctor being a fine wire gria (mesh 10 im., tilicimess (.l imo) leic upon it. Mhe celicite grid cun be supported by a stouter wire ring end cemented in with the gle.ss. A lead cen be teken out through the pitch or sealing wiex. This crrangement is an improvement on bilson's geletined plate, which wes found to become fogged by the formation of gerin cultures thereon. The wire grid does not obscure the vision much. The otleer pole of the field is the metal disk P iftted into the flcsk so as to leeve a free eir space of 2 to 3 mm . ell around. It is supported bv 3 or 4 risnt angled pieces

$$
\text { Jen.-অeb., } 1925 .
$$

of mire 1.5 min. thick (D) soldered to ε piece of brass tubing R which fits into the neck of the flask and projects a litile beyond it. From this projection the second lead is trken off to the source of potential The disk P elso performs tie more imortent function of replecing wilson's more expensive device for preventing the formetion of eddy currents, etc. (Icter modiliers cevsed the air to pass through a number of smell metal grids, but these vere found to rob the eir of its moisture so thet efter $\hat{\text { a }}$ few successive experiments the epparetus refused to function.) binen the stopcock If is opened, the air rushing out from K to the flask below causes c. cyclone between F and F but an anti-cyclone in the chamber to the right of F since the air from this part can only redie.te out arouna the ediges of P. Such on enti-cyclone is not at all conducive to the formetion of eddies. The plate P moreover forms a good beckground for the fog stremers.

The radium preperation (radiun sulphete) is supported on e, pin head, then pin being stuck in a piece of cork cemented to the botton of the flask. It is importont to use an insoluble redium selt. The bromide end chloride preparations quickly dissolve in the moist eir which \mathbb{K} netunally conteins.

When the spperetus is used for the first time, H should be removed and funnel inserted -- weter being poured in to a fev cms. sbove the level A . The ail cin iten be sucked through the outlet T until the U-tube is filled and the weter in Plesk I sinis to level A. I is then repleced and the :pperetus is ready for use.

When not in use, tile condensation flask mey be swing around so es to come cver m and clemped in this position, thereby taking up less space. The apperatus con then be stored away (filled with water) ready for inmedic,te use.

Valkenburg, Hollend.
τ

8.
 2. $2 \cdot 2=-$

 -20 2

 20.

C syoul ejq1ineval T9\%

B
 (2)
\qquad

SEISLOLOGICAL INST:LIATIONTS.

Increasing interest in geophysical researches has materially encouraged the installation of seismological apparatus, hecently severol requests have been received at this Observatory for suggestione on the placing of this type of apparatus and this he.s suggested the feasibility of offering the reciers of the Bulletin the following items.

Unlese for very special ressons seismographs should not be loccited ebove ground level. When they are to be placed in buildings alrecay esteblished, the cellar should be considered the most suitable location. lioreover that pert of the celler furthest removed from ell forms of jarrings should heve first choice. Instruments should never be sttached to the vells of these cellaxs. C\&ves, of course, are the fittest housings for these delicate recorders. These shouls be at least two thirds their heicht below the surface. hlweys locete seismogrephs of the horizontal type on piers, isoleted by air cushions, of one to two inches in width, from the flooring of the room. These piex should not be too deep, four leet it e maximum and never less then one and a half feet. Piers should be medt as massive as possible, thus eliminating pendular movement in them. In the construction of these piers reinforced concrete is the referable materizl to be used. Brick end stone shouls be evoided. There seems no reason for insulating piers on which vert-cal instruatents ere to be mounted. biny vertical instruments, if not all, celi for the most delicete temperature regulations. Where surface water is apt to lodge about piers, heavy oil should be used on the surfece to prevent deupness. Dampness generally can be met by including in the cases about the instruments fused calcium chloride. Amoyences ceused by insects can be elimineted by a periodic spraying of caves with one or other type of insecticide. Laboratory roons, developing rooms, etc., should never abut on the instrument shelter.

Fsther Frencis Tondorf S.J., Seismis Stetion, Georgetown University.

MFETING OF THU FMERICAIN ASSOCIATION.

The Christmas ieetine of the Amuricen Association for the Advancement of Science inf affiliated societies took place this year at Eshington,D.C. if fair number of Ours from this Province end froul the kissouri Province were in at lendence. The opening session was hel in Memoriel Continental Mrll at which the retiring president, Dr. C. W. Walcott, Secretary of the Smithsonian Institution, gave his addrest on "Science and Service". Ne spoke of the virtues that should characterize the scientist and declared thot he believed that s good scientist should be a Christian. IVe ended with the words, "The Pilgrim Fathers knew litile of science but they brought the great principles of lew, truti, freedom and feith in God to America. Are we doing all in our power to perpetuete them in connection vith the multiplex activities of the world of today?" Secretary of State, Hughes, also mac in excellent address. A lerge number of sessions were held in different parts of the city and it was necessery to moke a choice of those which promised pepers of most interest. sh instructive featureof the meeting was the scientific exhibit. This was quite extensive and well worth a visit. SeIEMCE for Feb. Gth gives ε good account of the meeting and of the exhibit.

PUBLICATIONS.

Fether F.A. Fondorf tas en orticle in the Jenuery issue of the SAVE THit SURTACL Megezine entitled "Seismogrims". We slso notice a full page portreit of Father Toniori beside one of his seismographs in Vol. II of THESL aVANTHUL YaiRS published by the Encyclopedia Brittanica Company. MI. N.J. Nickilliams has an article entitled "Lafitau: Father of liodern Ethnolocy' in the Jonuary mumber of the CMMCIIC VOFU Supplement No. 24 of the MONTMIY WEAMIPR ReviEW, July 1924, which is devoted the iiest Indian hurricenes and other tropical cyclones of the Mortil stlantic Ocean quotes Fatier J.J. Williams' vivid description of the hurricane of NOV .1312 of which he was e witness in Jemeice. TYCOS-ROCFESTER for Jenuery has an article entitled "A Famous Typhoon Outlook in the Philippires". It is a description of the Manila Observatory and its work with a picture of the Observatory ind of its distinguished Director Fether M Mue. There is also a picture of the new seismic observatory at Fordinm with e brief notice, TYCOS-ROCHESTER? is en interesting little quarterly published by the Traylor Instrument Company of sochester, N.X. While the subscription is 1.00 a year, schools, colleges and libraries ere added to the list without chirge. The SCIENTIFIC AWRICAN for February hes a picture of the Fordinam seismic observatory showing Mr. J.i. O'Conor who is in charge and his assistent.
N.B. Father Joseph Lefiteu, referred io in the above articlc by Mr. WcWilliams, was e Jrench Jesuit born in le7l. Me lebored es a Missionary in Cenede mons the Indions, end published at Faris in 1724 his famous work "lioeurs des scuveges tic.?" The principles and method: outlined therein form the besis of the article. Lafitcu died in 1746.

ANHOUNCEMLITT.
The Editor wishes to emmounce e series of exticles on photographic processes e.s a teeching help in scientific and literery class work by Father J.A. Brosnen of Fairview, Weston, isess. They will be practical in nature and will be of interest to all who make use of photography in their teaching or who wish to avail themselves of its valuable aid. The following are some of the topics to be treated:

1. Derkroom necesseries, chemics 2 end appare.tus.
2. The exposure room, the cumere and stend, lenses, object boerd, backgrounds, lighting and exposure.
3. Negative making, the plates and films best adapted for different objects, developers and fixing veth.
4. Excmination and 'coctoring' of nesetives, intensifying ana reducing, spotting out.
5. Slidt meking by contect and vith cumera, reduction, colors, brushes end coloring.
6. Color copying, orthochrometic plates and films, filters and their uses.
7. Developing papers end their manipulation.

Suggestions and cuestions on the ebove topics will be wel-

comed.

Deaths.

Nembers of our association were sadiened by the nevs of the
deaths of Fether W.R. Cullen and Zicher J.i. Dely. Pather Cullen was

 24.20

 -2

 ationg angut

 U" [untura

professor of physics at Georgetown University and died et the University liospitel on January 5th. He had taught physics vith great succer boti es a scholastic and as es Priest et Holy Cross and did post-gradu. ste work at Joins Kopkins last year. Bether J.A. Daly died at Voodstock on February 8tin. He wes ordeined last June and vas in his foutu year of theology. During his regency he taght chemistry at Fordhan. Doth Pethers were lovable clecracters and enthusiastic teachers and wil be much missed by their brethren. R.I.P.

HOTES.
ir. V.h. Gookin wites from Georgetown: "I attended the meet ings of the chemistry section of the smericen Association but found little to report. The old question of the plece of the electron in chemical education was brought up in one of the papers, but the reader seemed to report sucla differences of opinion thot we were left withoui eny conclusion. I do not know the opinions of our readers, but it seet to me that some of the teachers who were asked for an opinion met the question logically in replying that time is fleeting, chemistry text books are lengtiening, and the status of the electron is beyond e. certain point wavering so much that it has no place in the class room. Greshmen are not research workers and they heve some A B C matter to learn and to learn well before they begin to study and discuss electror Cne sometimes wishes thet teachers who talk so much about the heights to which their classes soar would HCNDSTLY tell us just what they do and just thet results they eet. A number of college teachers at the fmerican Chemical Society meeting last April in Washington made e plea for comion sense and honesty even at the risk of being called "old fashioned". To hear men who are Heads of chemistry departments at Universities plead for essentials of chemical teaching was reassuring after the elearms set up by others that unless we are talking like a milliken or 2 Langmuir to our reguler freshmen clesses we ere behind the times.

Dr. Jemes F. Norris, President of the fmerican Chemicel Sooiety, was a guest at dinner a.t Georeetown recently, on the invitation of Father Coyle who is s.ssociated with him in the work of the Netional Research Council.

Father Coyle wes named a member of the Frogrem Committee of Weshington Chemicel Society for the coming year."

Father M.J. Fhern of Holy Cross spoke to the members of the Boston Rotery Club on Feb. Il on the subject "What a Scientist-Theologian Thinks of tvolution". Fether J.A. Brosnen of weston geve en illustreted lecture before the Philometheia Club of Boston at Boston College on Feb. 13. His subject wies "Moths end Eutterflies and Their Larvae".

According to THi\# CATHOLIC STEND $A R D$ IND TIMAS of Philadelphia for Feb, 14 th., Dr. Faul Heyl of the bureeu of Stendards speaking from the Station WCAP in Washington on the subject "Weighing the Earth" gave an extended eccount of the work of Fether Kerl Breun of fustria along this line. Of course, Father Breun's main purpose wes the accurete determination of the gravitational constent from winich the weight of the earth can be deduced.

 R.0. 1 If神, 1*:

 , trumid

istonsed its ino

 1k7

