Butimetim
of the
AMERICAT ASSOCIATIO: OF JESUIT SCIEMIISMS
(Eastern Section)
(For private circulation)

Vol. II. Weston, Hass.
Sept.-Oct., 1924.
No. 1.

THE BULLETII.

The Bulletin brought a successful year to a close with the May-June number and it begins a new volume with this issue. A good start was made last year, the printing staff was organized, and sufficient interest wes aroused to assure the permanency of the publication. A brief report of the work was made at the Baltinore Meeting of the Association, and in particular the cooperation of a group of Woodstook theologians in doing the mimeographing and mailing and in contributing timely articlos was gratofully acknowledged. Plans were discussed to lighten the purely mechanical part of the work. The making of the stencils requires the most time and pains, and experience shows that it is better to have those of each issue made by the same individual. The Woodstock men again agreed to do the printing and mailing, and volunteers were obtained so that this year each set of stencils will be cut by a different man.

Our mailing list has grom. Active members of the Association have of course the first right to receive the Bulletin. If any do not receive it regularly we wish to be informed of the fact. We shall also be glad to send it to others interested whether or not of our own Province, or any other Province. While many outside reviews are always desirous of inoreasing the namber of paying subsoribers and advertisers in order to make sure of finencial success, we at present are looking especially for a larger number of readers whose interest will manifest itself by an occasional contribution. Articles on recent scientific work, on science teaching, references to books and articles, scientific activites in our schools, personal notes, in short anything which will prove of general usefulness and pronote interost in science and in science teaching will be welcome. Several of our schools are opening new science buildinge or will do so in the near future. Descriptions of these will prove very scceptable. Others heve scientific societies anong the boys. Let us hear about them. Let each reader conslder these words as addressed to himself persomally and let him resolve to send at least one contribution during the year. Address all such oommunioations to the Editor, Rev. H. M. Brock, S. J., Fairview, Concord Rd., Meston, Mass.

THE BALTIMORE MEETING.

> The third annual meeting of the Sastern Section of the American Association of Jesuit Scientists took place at Loyola College, Evergreen, Baltimore, on hugust 13 th and 14 th, 1924. It was most successful in every way and much enthusiasm was shown. The misgivings whioh some perhaps entertained that Loyola would not be able to take care of all those attending the meeting were soon dispelled. Every arrangement had been made for our comfort. Sleeping quarters had been provided at the College and High School. The pleasant weather made it possible to serve lunch on the veranda and on the lawn. Father MeFneany and the members of his community were most sollicitous in attending to the wants of all. Father W. J. Ahern presided over the general meetings, and the Vice-presidents presided over the sessions of their respective sections. There were 55 members in attendance including a delegation of former professors
of science and mathematics now at Woodstock. Reverend Father Provincial was unable to attend but sent a splendid letter of encouragement. Father Sloctemeyer of St. Louis University represented the Central Section of the Association. He gave an account of his own or ganization and its work. A goodly number of interesting papers wore read and discussed. The complete program and abstracts of the papers will soon appear in the Proceedings. All sessions were held in the new Science Building the munificent gift of Mr . George C. Jenkins of Baltimore. This fine new structure, an ornoment to the new Loyola, has just boen completed and most of the members enjoyed their first opportunity of inspecting its excellent class rooms and laboratories. A pleasing fenture of the first day's meeting was a reception tendered to the venerable Mr. Jenkins, the donor of the building. Fathers Ahern and Coyle exprossed the Association's appreciation of 1 Hr . Jenkins' generous gift which will not only contribute much to effective science teaching at Loyola but will also prove an inspiration to science teachers throughout the Province. How few benefactors we have had of the type of this noble Baltimore gentleman. "We are but following the traditions of the Socioty in peying due honor to one who has contributed a part of his wealth and consecrated it to the cause of Catholic aducation. Mr. Jenkins ${ }^{\text {t }}$ graceful speech was listened to with much interest.

The business of the meating left little leisure. However some of the members found time to pay a brief visit of inspection to the Purification Plant of the Baltimore Water Works. It is worthy of mention that the Central Scientific Company of Chicago considered the meeting of sufficient importance to sond a representative with an exhibit of some of their more recent apparatus, The election of officers for the coming year took placo at the past session. Father M.J. Whern of Holy Cross was again eleoted president; and Mr. J.B. Nuenzen general secretary. The following were slected vice-presidents and secretaries respectively of the various sections: Biology, Father C. E. Shaffrey of Boston College, and Mr. H.C. Macleod of Fordham University; Chemistry, Father G.L. Coyle and Mir. V.A. Gookin of Georgetown University; Mathematics, Father E.C. Phillips of Toodstock, and Mr. G.A. O'Donnell of Ceorgetom University; Physies, Father H.M. Brock of Weston, and Mr. J.P. Kelly of Woodstock. Father Brook was again appointed Bditor of the Bulletin.

SEIEMCE SUMARE SOHOOL.

After two sessions in New York State, one at Cenisius College, Buffalo, in 1922, the other at Fordham University, New York City in 1923, the Science Summer School returned this year to Holy Cross, Morcester, Mass., where it has 80 often carried on its work in the past. The sessions began on July 22 nd and ended on August 11th with classes every day except Sunday. Father H.C. Avery had charge of Fiology, assisted by Mr. D.V. MoCauley. Father M.J. Ahern gave instruction in Chemistry. Fathers Brook and Deppermann had oharge of the work in Physics, the latter fiving a series of lectures on the structure of the atom, relativity and other questions of modern physios. Father J.I. Qipprich gave instruction in Analytic Geometry, and Mr. F.W. Sohon in the Calculus. Through the good offices of Father Ahern a number of interesting scientific films were shown. Besides our own science professors thero was also one representative from Canade. The scholastics teaching the sophomore and freshman classes in our colleges had their summer work at Holy Cross at the same time. During the summer school, on the Feast of St. Ignatius, Fathor J. 1 N . Dinand succeeded Father J.J. Carlin as Rector of Holy Cross.

COMPARISOH OF TWO IEETHODS OF IREASURING ANTEINIA CAPACITY.
The object of this experiment was to compare the capacity of an antome measured by a comparison method using a ballistic galvanoneter with its capacity calculated from the resonance equation:

By putting this in the wave-length form and solving for C, we have 1^{2}

$$
0=\frac{}{355 \mathrm{~L} \times 10^{4}}
$$

where 1 is the wave-length in meters, L the inductance in micohenrys, and C the oapacity in microfarads. The wave-length is taken from the advertized values of the several large broad casting stations within east range of 700 stock and the inductance oalculated from the usual solenoid equation

$$
L=\frac{4 \boldsymbol{\pi}^{2} a^{2} n^{2} K}{b \times 10^{3}}
$$

where n is the number of turns, a the radius of the coil, and b its length, both in centimeters. This is the nomenclature of the Signal Corpe Handbook. "The Principles tinderlying ladio Cumunication," whioh also gives the values for the shape factor K as a function of the ration $2 \mathrm{a} / \mathrm{b}$. The inductance coil used in this experiment was wound with no. 26 S.C.C, wire on a card board form and had a diameter of 13.9 cms.; this was made the primary of a vario coupler, the secondary of which was connected to orystal detector. The distributed capacity of the inductances was found by experiment to be nefligible for our purposes. Tuning was done entirely by taps, and was done entirely by taps, and was naturally not very sharp. However, despite the many quantities entering into the calculations, the following values for the capacity of a small antemna were obtained.

STATION	WCAP	WRC	WGY	THZ	NDKA	
ADTEIIIA CAPACITY	0.00032	0.0002 E	0.00033	0.00042	0.00046	mf .

These values aro averages of two readings from WBZ and of four from all the others; the maximum was 0.00053 from KDKA, and the minimum was 0.00022 from WRC. All these figures are at least of the same order of magnitude and agree very well with what the books give as the antenna capacity of small antennas such as this one. As this anterna was not convenient to the ballistic galvanometer, another one (slightly smaller) was put up near the physics laboratory and the following values for its apacity were found in the seme way:-

Station	WCAP	WRPC	WGY	WBZ	KDKA
Antema Cepacity	0.00031	0.00035	0.00032	0.00046	0.00047
mf.					

The capacity of this anternn was nov mensured with the ballistic galvanometer by comparison against a standard mica condenser of 0.05 mf . capacity discharged into the galvanometer through a siunt of 5 . The E.M.F. was about 40 volts, supplied by $2 B$ batteries. As no regular discharging switch was available the contact time Was kept uniform by throwing the switch through the discharge position by means of a weight dropped from a constant height. Runs were made on dry days and on rainy days to see if any difference was noticeable:-

Antenna Capacity	Dry day	Rainy day
(small antenna)	0.00022 mf .	0.00075 mf.
	0.00061	0.00032

(Reprint)

The oapecity of the large antemna over the Moin House was measured in the same way with the following results:-

Anterina Capacity	Dry dey	Rainy dey
(1ar.ce antorna)	0.00089 mf.	0.00096 mf.
		0.00161

Setting down the averages from both methods and using only the dry weather values for the oapacity, we have

$$
\begin{array}{lll}
\text { Antenna Capacity } & \text { Calculated } & \text { By Comparison } \\
(\text { snall antenna }) & 0.00038 \mathrm{mf} . & 0.00039 \mathrm{mf} .
\end{array}
$$

Considering the many variables entering into the colculations and the coarseness of the tuning, the agreement is very satisfactory. It is seen that even the values given by the comparison method are none too accordant among themselves. It may be that slight atmospheric conditions a re responsible, since by the usa of the "automatic" discharge switch the galvanometer throw with the standard condenser could be checked to 0.2 mm . easily. It is also apparent that the cepacity values are larger for the highor frequency waves then for the lower, which may be due to errors in the shape factor K for very flat coils, such as were needed here to tune in such waves.

An attempt was made to calculate the capacity of the large anterna by the use of the meusurod inductance, but the external capacity was too large to permit any tunins at all worthy of the name. It is well known that a smaller antenna makes for sharper tuning, but we have not run across the mathematical reason for this; perhaps some of our readers can help us out. The equation for the impedence gives us:

$$
z=2 \pi n L-\frac{1}{2 \pi n C}
$$

and the condition for sharp tuning seems to be a large value for $\frac{d Z}{C}$ constant, using the conditions obtaining in our experiment. Since however, dL the quantity $d Z / d L$ in this case is a constant, it is not clear why the value of the external capacity should make any differenco in tuning.

By differentiating the resonance equation itself we get

which makes the slope of the curve actualy greater for increasing values of C. Obviously this experiment is only a start; if anyone wished to carry it further it would pay to use a straight vacuum tube detector (ron-regenerative) instead of the orystal, and to apply the measurements to the many C.W. stations that send only code and whose wave-lengths are fairly close to their published values.
F. W. Power, S.J.

PERUALLOY.

Some time ago it was discovered in the Bell System laboratories that cortain nickel-iron alloys, when properly heat-treated, possess remarkable magnetic propertios. The most starting results were obtained with alloys of approximately 80 per cent nickel and 20 per cent iron, whose permealbilities at
small field strengths aremany times greater than any hitherto kown. Io alloys of this approximate composition was given the name 'permalloy' to stress its most remarkable characteristic, permeability.

1. Process of Manufncture:-

a) Composition:- A Zypical analysis gives the following:- Niakel 78.23 pet., Iron $21 . \overline{35}$ pot., Carbon 0.04 pet., Silicon 0.03 pot., Phosphorous only a trace, Sulfur 0.035 pet., Kanganese 0.22 pet., Cobslt 0.37 pet., Copper 0.10 pet.
b) Defoct of Impurities:- The presence of elements other then nickel and iron is of course to be expected after any practical method of praparation. To determine their effects, semples were prepared in which the usual impurlties were present in various proportions. It was found that their presence does affect the permability of the alloys and that oarbon is especially harmful. Since, however, the variatione produced by slight changes in heat treatmont are very lerge compared with those due to small quantitios of impurities it was found unnecessary for most purposes to require higher purity than that indicated in the analysis above given.
o) The Manufacture:- The sarmles for laboratory study are propered by melting the purest comeroial niokel and Annco fron of the above composition in a silica orucible, using a Northrup high-frequency induction furnace. For laboratory purposes the billets (usually about six pounds) were reduced through the forms of rod and wire to the final form of tape 3.2 mm . Wide and 0.25 m . thick. Thin namour tape is partioularly adapted to use in experiments involving heat trastment, since it possesses a high ratio of area to volume and is eesy to manipulate. The entire niokel-iron series oan be worked if oare is taken; hence samples of same size, shmpe and condition sould be used for comparison purposes.

The heat treatment of permalloy is of the utmost importance. To develop its maximum initial permenbility it must be cooled not only through the proper temperature ranges, but also at the proper rates. The use of the thin tape seoures fairly uniforil trestment of the wiole volume so lons as the cooling is not too rapid. Fortunately the best cooling rate is not much different from the normal rate of oooling in the open air. Temperature ohanges below 300 degrees C. have very little effeot umon the resultant properties of permalloy, but the rate of ocoling fion just above the magnetic transformation tomperature down to about 300 degrees C. is the controlling factor. The laboratory samples are best treated thus: They are first heated to about 900 degrees C. for an hour and allowed to cool slowly, being protected froin oxidation throughout these processes. They are than reheated to 600 degrees C. , quiskly removed from the furnace and 191 d upon a oopper plate which is at room temperature.

By oareful explorationin the beginning with various samples, of varying porcentages of nickel and iron the region of about 80 pet. nickel and 20 pet. iron was flrst located as tho one most promising in high initial permeability, and then the best heat treatment for this composition was found. Keeping this treatanent unchanged, the best composition was again located, and found to be about 78.5 pct. nickel, 21.5 pet. iron. There is a maximum temperature in the equilibrium diagram of this binary at about 70 pot. nicked. It was at first thought that maximum perneability would also be found here, but oareful testing showed that this view was erroneous.
2. Wethod of Perneability Weasuromont:-

Thost of the moasuren \bar{n} s were made in a ring permeameter of special design. The ring sample is prepared by winding twenty or more turns of the tapesround a disk about 3 in . in dianeter. The disk is removed, leaving a spirally laminated ring with a rectangular aross section of bout 3.2 mm . by 6 mm . A single massive copper conductor is linked with this ring, and constitutes also the secondary of a transformer whose primary Windind forms one arm of an inductance bridge. From the bridge measuremonts and the dimensions of the ring, the permeability of the latter
may be readily computed. For most of the measurements a 112 -cycle alternating current was used, permitting the use of telephone receivers in adjusting the balance of the bridge. The bridge method is particularly adapted for the measurement of permeability in very veak magnetic fields since amplifiers'may readily be used to increase the delicacy of the bridge adjustment to almost any degree desired. In the test program measurements with fields of $0.002,0.003$, and 0.010 gauss were included, and on the graph of permeability against magnetizing field strength the straight line through these points has been extended to field strength zero. The permeability read from the graph at this point was called the 'initial permeability' of the sample.

The form of permeaneter used is especially adapted to making measurements quickly and with minimur handing of the sample, since it makes use of a single magnetizing turn. The ring is laid on suitablo insulating supports in an annular copper trough, and placing the copper cover on this trough completes the electrical circuit. In a modified instrument, the 'hot permeameter,' provided with a heating device, permeabilities may be measured from liquid air temperature up to about 1000 degrees C. Without altering the position of the sample.
3. The Peculiar Characteristios of Permalloy:malloy at room temperature so far found in the ring perneameter is about 13,000 , more than thirty times the corresponding value for the best soft iron. How extraordinary this is may be appreciated by considering that this material, although it has a saturation value of magnetio intensity comparable with that of iron, approachos magnctic saturation in the earth's field. Unusual eaution must therefore be exercised in measuring the propertios of permalloy to protect the sample from the influence of stray magnetic fields.

The following diagram (Figure 1) shows the values of initial permeability in sinilar ring samples of permalloy and of amealed Amon iron, and small portions of the corresponding m-H curves from which they were abtained. Hotice that two diagrams are needed, so vast is the difference of initial perneabilities.
b) Saturation Values:- The magnitization of permalloy at saturation wes measured and it was found that it was not sensitive to hent trentment. The saturation values of magnitization per gram-atom are known to vary almost linearly with composition throughout the nickel-iron series, from 222 for iron to 59 for nickel. The value 84 which was found for the 78.5 per cent nickel alloy is therefore not abnomal.
c) The magnetic characteristios of heat-treated ring samples of the same alloy have also been determined through a wider range of field strengths by ballistic methods. Figure 5 shows the enormous susceptibility of permalloy in the weak fields so important in oormunication engineoring. Figure 4 carries the comparison to 10 gauss showing that Armco iron has a larger saturation value. Figure 6 shows the surprising difference in hysteresis loops, carried to a maximum induction of 5,000 maxwells. The area of the permalloy loop is only one sixteenth that of the loop for soft fron. Figure 7 shows the $m-B$ curves for these materials. The maxinum permeability here shown, 87,000, which is not exceptionally high for permalloy laregly exceeds the highest values obtainable in silicon steel and of course occurs at a much lower flux density.
d) Other peculiarities:- Barly in the investigations it was found that heattreated permalloy is sensitive to strain, and the routine measurements were so conduoted as to avoid this disturbing effect. Studies on the effects of strain upon permeability and electrical conductivity in straight samples, and of the converse effects of magnetization upon dimensions and conductivity have been undertaken. They have not yet been completed, but it can be stated that these effects are large in comparison with the corresponding effects in hitherto available magnetic materials.

- Sept.-Oct., 1924

Figure 1.
Permeability Curves For Low
lagnetizing Forces.
Permalloy (upper)
Armeo Iron (lower)

Figure 2.

$$
m_{1}(=\text { initial pomeability) }
$$

(Reprint)

Figure 4.

So long as the elastic limit of the matorial is not exceeded the effeots due to strain are reproducitble and disappear when the strain is relieved. The effects of magnitization, however, show the expected hysteretic properties. As an example of the magnitude of the effects producible it may be stated that between its value in the unstrained condition and about one tenth that value, the initial permeability of a heat-treated strip of certain of these materlals can, by the mere variation of strain, be adjusted to any value we may for the moment desire.

The range through which the conduotivity can be similarly adjusted by strain is much narrower, the maximun reduction being about 2 per cent, which, however, is a large effect compared with that found in other metals. The effect of magnetization in reducing conductivity is as much as 2 per cent for fields of the order of one gauss.

Since the effects of tension on permeability is in some of these cases so marked, it seems surprising that the only reported study of the converse effect, that is of magnetostriction, indicated a zero value within the pemalloy range. This study was that of Monda and Mido, in 1920; but it should be noted that their alloys had received different treatments than those studied in the present paper. Preliminary results on permalloy indioate that under usual conditions of experiment, heat-treated 78.5 per cent niokel alloy exhibits larger magnetostriction than does iron.
4. Uses $\frac{\text { of }}{\text { a }}$ Onermalloy:gations of the Telephone orrer long distance telephony and of submarine cables.

The so-called 'telegraph equation' reads:-

$$
K L / c^{2} \cdot d^{2} 0 / d t^{2}+X R \cdot d o / d t=d^{2} o / d k^{2}
$$

Where $K=$ capacity per unit length, $\mathrm{C}=$ ratio constant, $\mathrm{I}=$ inductance per unit length, $R=$ resistance por unit length.
Attenuation, dietortion, etc., all arise from the troublesome second term. Honce if we make the first term very large in comparison with it, we shall be performing an inestimable service to telegraphy. L is the self-induatance of the wire per unit length, and $I=1 / 2 m^{\prime} 1+L^{\prime}$, where $m^{\prime}=$ permeability of material of wire, $\mathrm{I}^{\prime}=2 \mathrm{~m} \log (\mathrm{~b} / \mathrm{a})$. In our case m^{\prime} and hence I is large. If the wiro is sufficiontly thin in comparison with its distancie from other conductors, the selfinduction I per unit length becomes identical with $I-=k \pi / \mathrm{K}$, where $\mathrm{k}=\mathrm{diel}$. const., and $m=$ permeability. Hence we heve the relation $\mathrm{KL}=\mathrm{km}$. How the permeability m of permalloy is very large; this therefore increases the value of πI and therefore the value of the first tem of our tolegraphic equation in comperison with that of the secont, and hence there is a great reduction in the effects produced by the second tern, attenuation, distortion, ete. (Cf. PE . 504 and 446, Jeans, Elect. and Magnet.).
b) Since the effect of magnetization in reduoing conductivity is as much as 2 percent for field of the order of one gauss, for pormalloy, this makes it easy to measure the earth's megnetic field to within about 1 per cent by finding the stirength of the opposing field necessary to give a pemalloy strip its maximum conductivity. So write Arnold and Elmen in their paper.

It is interesting in this connection to quote the abstract of a paper read by S. R. Williams of California Institute of Tech., read at the Pasadena Meeting of the Am. Phys. Soc., May 1923.
"In studying the Joule magnetostrictive erfects in nickel, it was cound that nickel was extremely sensitive to the effects of any extraneous magnetizing forees. If the nickel rod was demagnetized in the presence of a steady magnetic field,
the rod mas always found to be magnetized in the direstion of the extraneous field, evon for extremely small fields. This observation has led to the following method for determining the earth's field. A short nickel rod is surrounded by two small coils and set in the magnetic meridian. By one poil a steady magnetic field is maintained and through the other is passed a decreasing alternating current for demagnetizing purposes. Near one end of the nickel rod a magnetometor needle is suspended. The rod is demagnetized in various stesdy fields opposing that of the earth's field, until zero deflection is obtained. At this point the opposing field is just equal to the earth's field. The method is very sensitive and accurate. A small form may be attached to a surveyor's transit, usin; the compass needle as the magnetometer needle. This combination enables one to determine all the components of the earth's magnetic field."
(to be continued)
Rev. C.E. Deppermann, S.J.
SOME NOTES OF INTEREST.
The Aurora $\frac{\text { Spectrum }}{\text { Professor }} \frac{\text { and }}{\text { A. }} \sqrt{\text { eca }} \frac{\text { Upper }}{\text { d, of }} \frac{\text { Atnosphere:- }}{\text { the Universi }}$
Professor $\overline{\text { A. }} \sqrt{\text { egard, of the University of Christiana, nearly fifteen }}$ years ago, upon examination of the aurora spectrum, found that all the lines could be identified with know lines of Mitrocen, except a green line at 5577 A ., and three other faint lines or bands. Since there was no trace of any lines from Hydrogen or Helium, Vegard considered that these lines must come from Nitrojon, which, however, wes in some abnormal physionl state. Finding that an
electrified atmosphere in a highly ionized state could not exist in tho form of ordinary gas, he assumed that IIfrogen at very. low temperatures was condensed into clusters or small orystals.

To test out this theory, Professor Vegard has been conducting a series of experiments in Kenmierlingh Omes' Leboratory in Leyden, where he has been bombarding solid liitrogen (formed on a copper surface cooled with liquid Hydrogen) with oathode rays, and photographing the resultant speotrum from the Mitrogen. Then the asthode rays had a high potential, around 700 volts, the typical aurora spectrum was exactly reproduced by the glowing Mitrogen, the agreament being not only in the green line 5577 A. , but even in the blue and violet parts of the spectrum. Then the gethode ray bombardment was stopped, the solid liitrogen Layer remainod luminous for more than fiver minutes, which agrees with an afterflow of about the same duration obsorved actually in the aurora. These experiments seem to prove conclusively the velidity of Vegard's theory that the aurora is due to the bombardment of solid Mitrogen arystals in the upper regions of our atmosphere by cathode rays, from the sun, particularly from the regions surrourding suri spots. (Cf. MATURe, May 17, 1924,p. 516.)

Webulium.
Astronomers who are interested in the supposed element nebulium which has been postulated to explain some lines of unlmown origin in the speatra of nubulae, should read the article by Harvey B. Lemon of the University of Chicago, in Wature, May 24,1924, P. 764. Dr. Lemon's article makes it seem highly probable that these lines may be after all only lines coming from fonized Helium.

Prue $\frac{X-R a y}{} \frac{\text { Reflection }}{\text { Recentiy A. }}$ H. Callpton (Phil. Hag., June 1924) and H. E. Strauss (Nature, July 19, 1924) have been able to obtain total reflection of the true type from glass, in full accord with Lorentz's on Foulated index of refraction for X-rays, i.e.

$$
\begin{gathered}
m=1-n e^{2} / 2 \pi w v^{2} \\
\text { (Reprint) }
\end{gathered}
$$

where $\underline{n}=$ number of elections per unit volume, $\underline{w}=$ mass of electron, $e=$ charge on electron, $\underline{v}=$ vibration frequency of X-ray. The aritical glencing angle is given by

$$
\sin \theta=\sqrt{2(1-m)}
$$

The wave lengths that Strauss reflected were about 1 fonsstrom unit in Length and reflection was obtained at angles of about $6^{\prime}, 8^{\prime}, 10^{\prime}, 12^{\prime}$.

A New Theory of Vacuum Discharge. important new theory as to what really takes place in tho vacuum discharge. The theory may be summed up ss follows:- fositive ions, on striking the cathode, emit radiation, which, falling on the cathode, causes a photoelectric emision of electrons from the oethode. These electrons emitted in this way from the cathode acquire a high speed, and cause the moleoules of the gas to emit a second radiation., which in turn ionizes the molecules it encounters. The recombination of the ions so produced constitutes the negative glow. On this theory, the difference of potential between a point on the dark space and the negative glow is proportional to the square of the distance of the point from the inner edge of the glow, which has been found to be the case by Aston.

Father C. E. Deppermann.

IUPORTAITT MEEMIHG OF OURS IN ROMT. A meeting is to trke place this Coll in Romo of delegates from various Frovinces of the Society for the consideration of a number of questions bearing on science and philosophy. It has the cordial approval of Very Reverend Father Goneral who has commissioned Father Aloysius Gatterer, Professor of Cosmology, higher Physics and Chemistry at Innsbruck, to arrange the progremi end attend to necescary dstails. The ramaricable progress of the physionl and matural scionces in recent years has given rise to a number of abstruse problens. Nany of these seom at first purely scientific but they nervertheless heive an important bearine on philosophy. There are for example problems comected with evolution, the theory of relativity, and the electron and quantum theorias and their relation to the constitution of matter. A frank discussion of these questions by en international gathering of Jesuit scholars is very timely and cannot but a.Cord light and guidance to our rofessors and Writers. Doubtlers an attempt Will be made to reach a conmon view-point on some of these vexed topics which will be both sciontific and in keeping with sound philosophy. Father $\mathbb{E} . \mathrm{C}$. Phillips of Foodstock, and Pather J. L. Gipprioh of Georgotown are the deleGates from our Province. Tie hope that they will give us some account of the meeting and of their experiences on thelr return. Father Phillips also planed to attend the conferences of the International Geodetic and Geophysical Union at Madric from Sept. 24 to Oct. 8. He received an invitation to this meeting through Dr. Willian Bowie, ohlef of the Division of Geodsy of the U.S. Coast and Geodetic Survey who is the President of the Section of Geodesy of the International Union.

Georgetown Observatoryb

Father John I. Gipprich, formerly Professor of Physics at Georgetown, has been appointed Director of the University Observatory. The Bulletin wishes him overy success in his new work. While in Pome he will have an opportunity to confer with Father J. Fagen one of his predecessors at Georgetown nnd now Director of the Vatican Observatory. We hope that he will be able to visit some
of the principal Europoan Observatories on his way home in order to got in touch with the work they are doing.

House of Philosophy \& Weston. Some of our readors may not have heard that for the first time all the first and second year philosophers of the Varyland-liew York Province including the Regio Novae Angliae are now domiciled at Fairview in Weston, Mass. of the last year's faculty, Father Mahoney is now at Noodstook, Father Gallagher is on the Mission Band, and Father Keyes is teaching at Boston College. Fathers Brock, J. Brosnan and Callahan came up from Woodstock. Chemistry, Biology and Physios are boing taught as last year in Bapst Hall. Considerable apparatus and chemical supplies were sent up from Moodstook. The plans for the new building call for an excellent, up-to-date science departiont with two large lecture rooms having raised seats and all conveniences, laboratories, preparation rooms, etc. Ground was broken last spring and a bout a third of the total plant is now under construction and is to be reudy for occupancy next summer at the latest. Work is goinc on rapidly now with the present fine fall weather. Fatier E. P. Tivman, under those wise and inspiring guidance Fordham University made such rapid progress during the past six years, became Rector at the beginning of September succeeding Father F. J. Mclliff the first Superior.

TEII TEI RSCOPE AT WOODSTOOK.
Last June the small old equatorial telescope in the Woodstock Observatory, familiar to generations of scholastics, was replaced by a larger instruitont with improved mount and clock drive. The objoctive has a diameter of something over four inches and was made either by Clark or Brashear. The mount was made by Wamer and Swasey of Cleveland who designed and constructed the mounts of some of the world's largest telescopes, such as those of the Niok, Yorkes, and Haval Observatorios. Father Phillips erectod the telescope on the old concrete pier which had anew top put on. The instrument fits nicely in the dome. It was used during August to observe the planet Mars at its opposition. The observatory has been much improved by the electric light which was installed last year.

JESUIT SCIENTISTS FROM EUROPE VISIT THE PROVIICE.
Father Aloysius Cartie, Director of the Stonyhurst Observatory, and Pather Gianfranceschi, Frofessor of Sclence at the Gregorian University, who attended the leeting of the British Association for the Advanoement of Science at Toronto last August visited several houses of our Province. Both paid flying visite to Meston to see the new house of philosophy. Father Gianfranceschi was also a delegate to the contonary Celebration of the Prani-lin Institue in Philadelphia. Our readers will remember that he was the delegate of the Holy See to the conference of the Leagua of Nations on the reform of the calendar. He is the suthor of "La Fisios dei Corposcoli."

PUBLICATIONS.

Mr. F. W. Power of Fordham University calls attention to the following reference in Chem. Abstracts, "The Constitution of Matter and Hylomorphism," by W. Jacobs, in Recueil des Travaux Chimiquen de Belgique ot des Pays-Bas, xlii, 609-613, (1923). This is apparently a philosophical paper. Perhaps some of our readers can tell us where this review can be consulted or purchased.

Father H. A. Judge, one of our Chaplains on Welfare (Blackwell's) Island, has a leading article in the Radio Forld for Sept. 13, entitled "Tubeless Set Works Loud Speaker," and another article in the same review for Sept. 20, on the "Tubeless Ar Amplifier."

Mr. G. J. Shiple sends us the following references to chemioal

1iterature:-

"Absolute Ethyl Alcohol," by E. Kneoht and E. F. Muller, in the Jour. Soc. Chem. Industry, 1924, xliii, p. 177; abstractod in Chemical Abstracts, 1924, xvili, 2494. According to these author's ethyl alcohol can be readily dehydrated by distillation from a mixture of alcohol, Glycerol and water. (of. Chemical Abstracts for the details.)
"Degree of Ionization of Bthyl Alcohol. I. From Conductivity Methods", by P. S. Danner and J. H. Hildebrand, in the Jour. An. Cme. Soc., 1922, x1iv, 2824; also in Science Abstracts, 1923, xxvi, p. 239. It was found that the dissociation constant of ethyl alcohol was 2.89×10^{-16}, and that the fraction dissociated was 1.0×10^{-9}. These results are based on the assumptions, neither strictly accurate, that all the conducting bodies present arethe ions of alcohol and these consist of H and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{\text {; }}$ the value found for the degree of ionization may hence be considerably too high.
"II. Erom E.M.F. Measurements, " ibid, p. 2832. The dissociation constant of ethyl aloohol into H and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ ions is calculated to be 7.28×10^{-20}, the oraction distociated beins 1.0
$x^{2} 10^{-11}$.
"Ionization of Aloohols, " by R. J. Williams and R. W. Truesdail, in Jour. An. Wem. Soc., 1923, xlv, 1348, ebstrasted in Science Abstracts 1923, xxvi, 999. The results indicate that alcohol is about 8 per cent as highly ionized as water. The nature of the method of determination, however, renders this result too high. Other investigations by the same authors show that alcohols ionize only one way, i.e. as feeble roids.
"H Ion Concentration," by ‥ Damois, in the Jour. Phys. Padium, 1923, iv, 461; and abstracted in Chemical Abstracts, 1924, xviii, 1935: It is a systematic review including most of the more important work of recent years, dealing with the theory, methods of determination, and its application to various problems. The eleotrometric and colorimetric methods are described in detail and contrasted.

QUERY.
When ordinary friction tape is being pulled of its roll in a dark room, a sort of phosphorescence is seen at the point where the tape is "peeling off." Has any one an explanation for this?
F. II. Power, S. J.

A CORRECTION.

In our Hay-June number we referred to a note in SCIEMCE which stated that Fathers Licent and Ieilhard had discovered some anoient human remains in China. It was possibly taken from WATURE. At any rate Father Deppermann sends us the following paragraph taken from MATURE for Way 31, 1924.
"WATURE, for May 31, 1924, prints the following correction:-
'In llature, of February 9, p.204, we quoted a newspaper corcespondent's account of the discoveries of Fathers Licent and Teilhard in the Pleistocene deposits of China. Father Teilhard now writes to correct some misapprehensions in this account, remarking especially that no remains of human skeletons of Pleistocene age have so far been found. Several Palaeolithic floors, however, rich in worked quartzite and the remains of Pleistocene mammals, have been explored. The small horse referred to is apparently a hemionus or wild ass, closely similar to that still livins in Mibet. "

